吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1388-1396.

• • 上一篇    下一篇

基于知识图谱的设备电子信息资源精准推荐算法

陈 斌, 顾 珑   

  1. 南京医科大学第三附属医院 医学装备科, 江苏 常州 213000
  • 收稿日期:2023-12-04 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 顾珑 (1989— ), 男, 江苏常州人, 南京医科大学第三附属医院工程师, 主要从事医疗器械的维修与质控研究, (Tel)86-15295081079(E-mail)120385161@ qq. com。 E-mail:120385161@ qq. com
  • 作者简介:陈斌 (1990— ), 男, 江苏苏州人, 南京医科大学第三附属医院工程师, 主要从事医疗器械的维修与质控研究, (Tel)86-18773475659(E-mail)CHENB9009@ 126. com
  • 基金资助:
    常州市 2023 年度市级卫生健康经济管理研究课题基金资助项目(wjjg2307)

Precise Recommendation Algorithm for Information Resources of Equipment Electronic Based on Knowledge Graph

CHEN Bin, GU Long   

  1. Medical Equipment, Southern Medical University Third Hospital, Changzhou 213000, China
  • Received:2023-12-04 Online:2025-12-08 Published:2025-12-08

摘要:

由于设备电子信息涉及到的数据来源广泛、类型多样, 为了准确从海量的数据中提取出有用的信息,提出基于知识图谱的设备电子信息资源精准推荐算法。建立设备电子信息资源的知识图谱, 并以文本和结构为基础, 利用卷积神经网络(CNN: Cellular Neural Network)补全知识图谱, 使算法覆盖资源更全面。分析用户的兴趣和偏好, 提取设备电子信息资源的特征。最后, 采用协同过滤推荐算法得到资源相似度矩阵度, 由矩阵预测用户的检索行为, 从而获得推荐列表。经实验证明, 所提算法的覆盖率平均为 94. 5% , 命中率平均为96. 7% , 归一化折损累计增益达到了 0. 91, 可以准确为用户推荐需要的信息资源。

关键词:

Abstract:

The electronic information of equipment involves a wide range of data sources and various types. It is necessary to accurately extract useful information from massive data. Therefore, an accurate recommendation algorithm of electronic information resources of equipment based on knowledge graph is put forward. The knowledge graph of the equipment electronic information resources based on the text and structure. CNN(Cellular Neural Network) is used to complete the knowledge graph, so that the algorithm covers the resources more comprehensively. The user's interests and preferences ares analyzed, and the characteristics of the device's electronic information resources are extracted. Finally, a collaborative filtering recommendation algorithm is used to obtain the resource similarity matrix, predicting the user's retrieval behavior, so as to obtain the recommendation list. The experiment proves that the average coverage of the proposed algorithm is 94. 5% , the average hit rate is 96. 7% , and the cumulative gain of normalized loss reaches 0. 91, which can accurately recommend the required information resources for users.

Key words:

中图分类号: 

  • TP391