吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1397-1403.

• • 上一篇    下一篇

基于同态加密的智能信息化数据库隐私保护方法

王 霞, 吴玲玲   

  1. 泰山科学技术研究院 泰安市创新发展研究院, 山东 泰安 271000
  • 收稿日期:2023-11-16 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 吴玲玲(1990— ), 女, 山东泰安人, 泰山科学技术研究院助理研究员, 主要从事智能信息处理研究, ( Tel) 86-13615480016 ( E-mail) HH140923 @126. com E-mail:HH140923 @126. com
  • 作者简介:王霞(1979— ), 女, 山东泰安人, 泰山科学技术研究院副研究员, 主要从事技术推广应用, 计算机与科学技术, 智能信息化, 科技情报信息技术研究, (Tel)86-13615480016(E-mail)qbs009@ 163. com
  • 基金资助:
    泰安市科技创新发展基金资助项目(2022GX036)

Privacy Protection Method for Intelligent Information Databases Based on Homomorphic Encryption

WANG Xia, WU Lingling   

  1. Tai'an Innovation and Development Research Institute, Taishan Institute of Science and Technology, Tai'an 271000, China
  • Received:2023-11-16 Online:2025-12-08 Published:2025-12-08

摘要:

为解决智能信息化数据库数据泄露的问题, 提出了一种基于同态加密的智能信息化数据库隐私保护方法。首先利用主成分分析法提取智能信息化数据库数据特征; 其次, 通过 K-means 聚类算法完成数据库数据分类, 以提高后续的数据加密效率; 最后采取椭圆曲线同态加密算法对聚类后的数据库数据实施加密, 实现数据库的隐私信息保护。实验结果表明, 该方法的总熵值均接近于 0, 最大熵值不超过 0. 01, 且加密后的数据分布不存在规律性, 数据间的距离较为一致; 同时, 泄露概率保持在 1% 以内, 整体上升幅度较小。证明了所提方法在数据库隐私保护方面的实用性。

关键词:

Abstract:

To solve the problem of data leakage in intelligent information databases, a privacy protection method for intelligent information databases based on homomorphic encryption is proposed. Firstly, principal component analysis is used to extract the features of data in intelligent information database. Secondly, the K-means clustering algorithm is used to classify database data, in order to improve the efficiency of subsequent data encryption. Finally, the elliptic curve homomorphic encryption algorithm is adopted to encrypt the clustered database data, achieving privacy information protection of the database. The experimental results show that the total entropy value is close to 0, and the maximum entropy value does not exceed 0. 01. And the encrypted data distribution is irregular, and the distance between the data is relatively consistent. The probability of leakage remains within 1% , and the overall increase is relatively small. This proves the practicality of the proposed method in protecting database privacy.

Key words: homomorphic encryption, intelligent information database, privacy protection, principal component analysis, K-means clustering

中图分类号: 

  • TP309. 2