吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1411-1420.

• • 上一篇    下一篇

粒度语义分析模型及其在课程评价中的应用

李爱军, 李慎为1 , 刘 皓2 , 赵一衡2 , 李学庆2 , 胡宇鹏2 , 范景鸣3 , 门志伟1   

  1. 1. 吉林大学 物理学院, 长春 130012; 2. 山东大学 软件学院, 济南 250101; 3. 东北师范大学 附属高中, 长春 130021
  • 收稿日期:2025-01-26 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 门志伟(1981— ), 男, 黑龙江五常人, 吉林大学教授, 博士, 主要从事非线性光学、 分子光谱学研究, (Tel)86-13504404811(E-mail)zwmen@ jlu. edu. cn。 E-mail:zwmen@ jlu. edu. cn
  • 作者简介:李爱军( 1979— ), 女, 山东潍坊人, 吉林大学副教授, 博士, 主要从事光学, 深度学习及其应用研究, ( Tel) 86- 13504300747(E-mail)laj@ jlu. edu. cn
  • 基金资助:
    吉林大学研究生教育教学改革与研究基金资助项目(2025RGZNY015); 吉林大学 2023 年研究生全英文课程基金资助项目(课程名称: 学科专业外语)

Multi-Granularity Semantic Analysis Model and Its Application in Course Evaluation

LI Aijun1, LI Shenwei1, LIU Hao2, ZHAO Yiheng2, LI Xueqing2,HU Yupeng2, FAN Jingming3, MEN Zhiwei1   

  1. 1. College of Physics, Jilin University, Changchun 130012, China;2. School of Software, Shandong University, Jinan 250101, China;3. High School Attached to Northeast Normal University, Changchun 130021, China
  • Received:2025-01-26 Online:2025-12-08 Published:2025-12-08

摘要:

为解决现有课程评价模型在跨句语境敏感性不足、文本语义重要性挖掘不充分等问题, 提出一种基于多粒度语义分析的课程评价模型, 以更准确地表征学生文本中的真实意图并支持后续的情感分类与知识提取任务。该模型结合预训练模型和深度神经网络, 提取词、句和词性粒度文本特征向量对语义分析和处理, 并以课程评价文本为例进行实验和分析。模型采用精确和模糊匹配评估方式, 同时引入 Dropout 和 ReLU(Rectified Linear Unit)激活函数以提高模型的泛化能力。通过不同的文本预处理策略, 结合停用词去除和重要词汇筛选,提升模型的分类性能。实验结果表明, 该模型在课程评价情感分析任务中表现优异, 尤其在处理模糊情感边界时, 准确率达到 92. 53% 。该语义分析模型有助于全面捕捉学生对课程的细致反馈, 为教育领域提供了有效的自动化评价工具, 优化教学质量。

关键词:

Abstract: To address the limitations of existing course evaluation models-specifically their insufficient sensitivity to cross-sentence context and inadequate extraction of semantic importance-this paper proposes a multi-granularity semantic analysis-based model that more accurately captures students' true intentions within textual feedback and supports downstream tasks such as sentiment classification and knowledge extraction. The model integrates pre-trained models and deep neural networks to extract word-level, sentence-level, and part-of-speech-level text feature vectors for semantic analysis and processing. Using course evaluation texts as an example, we conduct experiments and analyses. The model employs both precise and fuzzy matching evaluation methods and incorporates Dropout and the ReLU ( Rectified Linear Unit) activation function to enhance its generalization capability. In the experiments, we improved the model's classification performance by adopting various text preprocessing strategies, including stopwords removal and key term selection. The results indicate that the proposed model excels in sentiment analysis for course evaluations, achieving an accuracy of 92. 53% ,particularly when dealing with ambiguous sentiment boundaries. For course evaluations, the proposed semantic analysis model effectively captures detailed feedback from students, providing an efficient automated evaluation tool for the education sector and optimizing teaching quality.

Key words:

中图分类号: 

  • TP311