吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1421-1429.

• • 上一篇    下一篇

基于异构集群协同的网联交叉口车流引导控制方法

薛 傲, 刘鹏举, 李海涛, 鲁萧天, 张熠迈   

  1. 吉林大学 交通学院, 长春 130022
  • 收稿日期:2025-01-08 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 李海涛(1994— ), 男, 内蒙古赤峰人, 吉林大学交通学院讲师, 主要从事智能交通管控研究, (Tel)86-18844198645(E-mail)lihait@ jlu. edu. cn E-mail:lihait@ jlu. edu. cn
  • 作者简介:薛傲(2004— ), 男, 河南开封人, 吉林大学本科生, 主要从事交通信号优化研究, ( Tel) 86-15194608781 ( E-mail)xueao1722@ mails. jlu. edu. cn
  • 基金资助:
    吉林省教育厅科学技术研究基金资助项目 ( JJKH20241298KJ ); 吉林大学创新创业训练计划基金资助项目(S202410183332)

Cluster Heterogeneous-Based Collaborative Control Method for Traffic Flow Guidance at Connected Intersections

XUE Ao, LIU Pengju, LI Haitao, LU Xiaotian, ZHANG Yimai   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2025-01-08 Online:2025-12-08 Published:2025-12-08

摘要:

为使交叉口各向交通流能构达到最佳生态运行的引导控制, 基于集群协同思想, 将智能网联交叉口车流控制转化为网联车辆与信号组成的异构智能体集群控制问题。综合交叉口宏观交通流特性与车辆微观生态效益, 构建融合车辆引导与信号协同优化的交叉口车流生态引导协同控制方法; 以交通流-队列协控方式与迭代反馈策略, 生成系统生态效益最优的车辆行驶与信号配时组合方案; 设计基于多智能体强化学习的控制快速求解方法, 提升控制方案求解过程的精确性与时效性。实验结果表明, 该模型在智能网联环境下, 能实现动态生成交叉口车辆引导与信号协控方案。

关键词:

Abstract:

In order to guide and control traffic flows from all directions at intersections for achieving optimal ecological operation, based on the concept of swarm intelligence cooperation, the control of traffic flows at intelligent connected intersections is transformed into a heterogeneous multi-agent swarm control problem composed of connected vehicles and traffic signals. By integrating macroscopic traffic flow characteristics of intersections with the microscopic ecological benefits of vehicles, an ecological guidance and cooperative control method for intersection traffic flow is constructed, which combines vehicle guidance with signal coordination optimization. Through a traffic flow-queue cooperative control mechanism and an iterative feedback strategy, the method generates a combination of vehicle trajectories and signal timing schemes that maximize the overall ecological benefits of the system. Furthermore, a fast solution method based on multi-agent reinforcement learning is designed to improve both the accuracy and timeliness of the control scheme optimization process.Experimental results demonstrate that the proposed model can dynamically generate vehicle guidance schemes and signal cooperative control schemes at intersections under intelligent connected environments.

Key words:

中图分类号: 

  • TP273