吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 61-70.

• • 上一篇    下一篇

新型 YOLOv3-Tiny 在绝缘子故障检测中的应用

王炳北1 , 郑 辉2 , 孙德罡3   

  1. 1. 大庆油田有限责任公司第三采油厂 工艺研究所, 黑龙江 大庆 163113; 2. 大庆油田有限责任公司第一采油厂 数字化运维中心, 黑龙江 大庆 163000; 3. 大庆石化公司 设备维修中心化工区仪表一车间, 黑龙江 大庆 163714
  • 收稿日期:2024-11-21 出版日期:2026-01-31 发布日期:2026-02-02
  • 作者简介:王炳北(1979— ), 男, 内蒙古呼伦贝尔人, 大庆油田有限责任公司副高级工程师, 主要从事油田地面工程技术研究和 应用管理等研究, (Tel)86-13945929368(E-mail)wangbingbei@ petrochina. com. cn
  • 基金资助:
     海南省自然科学基金资助项目(623MS071) 

Application of New YOLOv3-Tiny in Insulator Fault Detection

WANG Bingbei 1 , ZHENG Hui 2 , SUN Degang 3   

  1. 1. Process Research Institute, No. 3 Oil Production Company of Daqing Oilfield Corporation Limited, Daqing 163113, China; 2. Digital Operation and Mainterance Center, No. 1 Oil Production Company of Daqing Oilfield Corporation Limited, Daqing 163000, China; 3. Equipment Maintenance Center, Chemical Zone Instrument Workshop 1, Daqing Petrochemical Company, Daqing 163714, China
  • Received:2024-11-21 Online:2026-01-31 Published:2026-02-02

摘要: 由于输电线路绝缘子故障直接影响电网稳定运行, 为准确识别绝缘子故障, 提出一种基于改进 YOLOv3 (You Only Look Once 3)-Tiny 的绝缘子故障诊断方法。 首先, 在特征提取网络中集成通道-空间注意力机制, 强化关键特征捕获能力。 然后, 设计跨阶段部分连接-感受野模块, 以增强小目标的检测能力, 同时减少计算 量。 最后, 采用一种新颖的损失函数优化定位精度。 实验表明, 改进后的 YOLOv3-Tiny 算法在检测绝缘子故障 方面表现出高达 97. 4% 的平均准确率, 超越原始 YOLOv3-Tiny 算法。

关键词: 深度学习, 缺陷检测, 绝缘子故障诊断

Abstract: Insulator faults in transmission lines directly threaten power grid stability. To accurately identify insulator faults, an insulator fault diagnosis method based on an improved YOLOv3(You Only Look Once v3)- Tiny framework is proposed. Firstly, a channel-spatial attention mechanism is integrated into the feature extraction network to enhance critical feature capture capabilities. Subsequently, a CSP-RFB ( Cross Stage Partial-Receptive Field Block) module is designed to improve small-target detection performance while reducing computational complexity. Finally, a novel loss function is adopted to optimize localization accuracy. Experimental results demonstrate that the enhanced YOLOv3-Tiny algorithm achieves up to 97. 4% MAP(Mean Average Precision) in insulator fault detection, significantly outperforming the original YOLOv3-Tiny model.

Key words: deep learning, defect detection, insulator fault diagnosis

中图分类号: 

  • TP391. 4