多保真,贝叶斯优化,高斯过程,晶体结构预测," /> 多保真,贝叶斯优化,高斯过程,晶体结构预测,"/> <span style="font-family:"微软雅黑",sans-serif;font-size:10.5pt;">基于多保真贝叶斯优化的稳定晶体结构预测算法</span>

吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 87-93.

• • 上一篇    下一篇

基于多保真贝叶斯优化的稳定晶体结构预测算法

 邱昊田a,b , 季境隆b,c , a,b   

  1. 吉林大学 a. 计算机科学与技术学院; b. 符号计算与知识工程教育部重点实验室; c. 人工智能学院, 长春 130012
  • 收稿日期:2024-12-08 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 杨博(1974— ), 男, 河南新乡人, 吉林大学教授, 博士生导师, 主要从事 图神经网络、 图优化研究, (Tel)86-431-85166892(E-mail)ybo@ jlu. edu. cn
  • 作者简介:邱昊田(2000— ), 男, 山东烟台人, 吉林大学硕士研究生, 主要从事多保真贝叶斯优化算法研究, (Tel)86-18745105930 (E-mail)qiuht22@ mails. jlu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(U22A2098; 62172185)

Algorithm for Stable Crystal Structure Prediction Based on Multi-Fidelity Bayesian Optimization

QIU Haotian a,b , JI Jinglong b,c , YANG Bo a,b   

  1. a. College of Computer Science and Technology; b. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education; c. School of Artificial Intelligence, Jilin University, Changchun 130012, China
  • Received:2024-12-08 Online:2026-01-31 Published:2026-02-04

摘要: 针对在晶体结构预测中分开使用第一性原理方法和机器学习模型, 导致无法有效利用机器学习模型提供 的信息使效率降低的问题, 提出了一种基于多保真贝叶斯优化的稳定晶体结构预测算法。 算法通过代理模型 建模晶体结构的势能面, 采集函数根据势能面建模结果选取采样点以及对应的评估保真度, 评估函数对采样点 进行评估, 评估结果用于代理模型的更新。 满足终止条件后, 算法停止迭代并输出最终预测的稳定晶体结构。 实验结果表明, 该算法可以有效利用机器学习模型的信息, 在保证最终预测结果精度和质量的同时具有更高的 效率。

关键词: 多保真')">多保真, 贝叶斯优化')">贝叶斯优化, 高斯过程')">高斯过程, 晶体结构预测')">晶体结构预测

Abstract: Aiming at the issue of reduced efficiency caused by separate use of first-principles methods and machine learning models in crystal structure prediction, which hinders the effective utilization of information provided by machine learning models, a stable crystal structure prediction algorithm based on multi-fidelity Bayesian optimization is proposed. The algorithm models the potential energy surface of crystal structures through a surrogate model, and the acquisition function selects sampling points along with their corresponding evaluation fidelity based on the modeling results of the potential energy surface. The evaluation function then assesses the selected sampling points, and the evaluation results are used to update the surrogate model. Upon meeting the termination criteria, the algorithm ceases iteration and outputs the final predicted stable crystal structure. Experimental results demonstrate that the proposed algorithm effectively leverages the information from machine learning models, ensuring both the accuracy and quality of the final prediction results while achieving higher efficiency.

Key words: multi-fidelity, Bayesian optimization, Gaussian process, crystal structureprediction

中图分类号: 

  • TP391