吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 94-102.

• • 上一篇    下一篇

基于 IBO-CNN 的轴承故障智能诊断

杨静亚1a,1b , 闫丽梅1a,1b , 曾伟铭2 , 孙玉庆3 , 田 野3   

  1. 1. 东北石油大学 a. 提高油气采收率教育部重点实验室; b. 电气信息工程学院, 黑龙江 大庆, 163318; 2. 国网黑龙江省电力有限公司 大庆供电公司, 黑龙江 大庆 163453; 3. 大庆油田有限责任公司 第三采油厂信息中心, 黑龙江 大庆 163113
  • 收稿日期:2025-04-16 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 闫丽梅(1971— ), 女, 哈尔滨人, 东北石油大学教授, 博士生导师, 主要从事 电力系统分析与控制研究, (Tel)86-13845904628(E-mail)565735794@ qq. com
  • 作者简介:杨静亚(1994— ), 女, 河北衡水人, 东北石油大学博士研究生, 主要从事深度学习故障诊断研究, (Tel)86-15636999650 (E-mail)yjydqyyds@ 163. com
  • 基金资助:
    国家自然科学基金资助项目(51774088); 黑龙江省重点研发计划基金资助项目(2024ZXJ01A04)

Intelligent Diagnosis of Bearing Faults Based on IBO-CNN

YANG Jingya 1a,1b , YAN Limei 1a,1b , ZENG Weiming 2 , SUN Yuqing 3 , TIAN Ye 3   

  1. 1a. Key Laboratory of Enhanced Oil and Gas Recovery of Ministry of Education; 1b. School of Electrical Information and Engineering, Northeast Petroleum University, Daqing 163318, China; 2. Daqing Power Supply Company, State Grid Heilongjiang Electric Power Company Limited, Daqing 163453, China; 3. The Third Oil Production Plant Information Center, Daqing Oilfield Limited Liability Company, Daqing 163113, China
  • Received:2025-04-16 Online:2026-01-31 Published:2026-02-04
  • Supported by:

摘要: 针对现有的贝叶斯优化算法计算复杂、 寻优效率较低问题, 提出了一种改进的贝叶斯优化算法( IBO: Improved Bayesian Optimization)。 首先, 对蒙特卡洛马尔科夫链(MCMC: Monte Carlo Markov Chains)算法进行改 进, 使用高斯代理函数改进建议函数, 同时在先验函数中加入超先验, 简化了高斯超参数优化计算的复杂度, 提高了计算效率。 其次, 提出了在卷积神经网络(CNN: Convolutional Neural Network)超参数优化过程中将损失 函数与数据集大小进行高斯建模, 使模型能自适应选择优化超参数所用的数据集大小, 从而可在使用较少数据 集的情况下寻找到使损失函数最小的超参数组合。 使用 Branin-Hoo 函数对改进的贝叶斯优化算法进行测试, 证明了 IBO 算法能在最短的时间内找到最优值。 使用 IBO-CNN 对 PU(University of Paderborn)数据集进行故障 诊断, 并与其他超参数优化算法进行对比, 结果证明 IBO 算法能更快速找到损失函数最小值, 使训练过程快速 收敛, 诊断精度高于其他算法 0. 5% ~ 3% 左右, 并在不同工况下的数据集上都表现出良好的故障诊断性能, 证明了该算法比其他优化算法具有更高的计算效率。

关键词:  贝叶斯优化, CNN 超参数, 轴承故障诊断, 蒙特卡洛马尔科夫链(MCMC) 

Abstract: Existing Bayesian optimization algorithms often suffer from high computational complexity and suboptimal efficiency in locating the global optimum. To address these limitations, an IBO( Improved Bayesian Optimization) algorithm is proposed. First, the MCMC(Monte Carlo Markov Chains) algorithm is improved by using a Gaussian proxy function to improve the proposal function, while adding a hyper-prior to the prior function, which simplifies the complexity of the internal hyper-parameter optimization computation of the Gaussian process, and improves computational efficiency. Second, Gaussian modeling of the loss function with respect to the dataset size in the hyperparameter optimization process of CNN(Convolutional Neural Networks) is proposed to enable the model to adaptively select the dataset size to optimize the hyperparameters, so that the combination of hyperparameters that minimizes the loss function can be found using fewer datasets. The improved Bayesian optimization algorithm is tested using the Branin-Hoo function, which proves that the IBO algorithm is able to find the optimal value in the shortest time. Using IBO-CNN for fault diagnosis on PU( University of Paderborn) dataset and comparing with other hyper-parametric optimization algorithms, the results prove that the IBO algorithm can find the minimum value of the loss function more quickly, so that the training process converges quickly, the diagnostic accuracy is higher than the other algorithms by about 0. 5% to 3% , and it exhibits a good fault diagnostic performance on dataset under different working conditions. Thus it is proved that the algorithm has higher computational efficiency than other optimization algorithms. 

Key words: bayesian optimization, convolutional neural networks ( CNN) hyperparameters, bearing fault diagnosis, monte carlo markov chains(MCMC)

中图分类号: 

  • TP18