吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 111-120.

• • 上一篇    下一篇

基于改进 CNN 的可见光-红外行人重识别方法

 崔博文, 李文辉   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2024-12-27 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 李文辉(1961— ), 男, 长春人, 吉林大学教授, 博士生 导师, 主要从事计算机图形学、 图像处理和模式识别研究, (Tel)86-18514389698(E-mail)liwh@ jlu. edu. cn
  • 作者简介:崔博文(2001— ), 男, 黑龙江齐齐哈尔人, 吉林大学硕士研究生, 主要从事计算机图像处理与虚拟现实技术研究, (Tel) 86-15245816770(E-mail)cuibw22@ mails. jlu. edu. cn
  • 基金资助:
    吉林省自然科学基金重点研发基金资助项目(20230201082GX)

Person Re-Identification Method of Visible-Infrared Based on Improved CNN

CUI Bowen, LI Wenhui    

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2024-12-27 Online:2026-01-31 Published:2026-02-04

摘要:  针对可见光-红外行人重识别任务中利用行人细节特征减轻可见光图像和红外图像之间的模态差异而导 致的过拟合问题, 提出了一种基于改进卷积神经网络(CNN: Convolutional Neural Networks)的结合数据增强技 术与细节特征提取方法的端到端网络。 以生成多样嵌入特征的同时匹配行人细节特征减轻模态差异为目标, 设计了一个高效的双分支注意力模块学习信息更加丰富的特征表达, 并提出了一种具有数据增强作用的三元 组损失函数缓解过拟合。 通过在公共数据集 SYSU-MM01 和 RegDB 上进行的大量实验表明, 所提出的方法优于 其他方法,有效减轻了注意力机制导致的过拟合问题, 提高了行人重识别的准确性。

关键词: 卷积神经网络, 可见光-红外行人重识别, 注意力机制, 数据增强, 过拟合

Abstract: To solve the overfitting problem caused by leveraging pedestrian detail features to reduce the modality gap between visible and infrared images in the visible-infrared person re-identification task, an end-to-end improved CNN ( Convolutional Neural Networks) based on data augmentation techniques and detail feature extraction methods is proposed. With the goal of reducing the modality gap by generating diverse embedding features while simultaneously matching pedestrian details, an efficient dual-branch attention module is designed to learn more informative feature representations, and a triplet loss function with data augmentation is proposed to alleviate overfitting. Extensive experiments on the public datasets SYSU-MM01 and RegDB demonstrate that the proposed method outperforms other methods, effectively mitigating the overfitting problem caused by attention mechanisms and improving the accuracy of person re-identification.

Key words: convolutional neural network(CNN), visible-infrared person re-identification(VI-ReID), attention mechanisms, data augmentation, overfitting

中图分类号: 

  • TP183