吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 121-128.

• • 上一篇    下一篇

数据挖掘技术下线上诊疗信息多维特征提取方法

张丽杰1 , 陆江东2 , 邱 景1   

  1. 1. 海军军医大学第一附属医院 信息科, 上海 200433; 2. 海军军医大学 计算机学院, 上海 200433
  • 收稿日期:2025-06-09 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 邱景(1982— ), 男, 江西景德镇人, 海军军医 大学工程师, 主要从事医疗信息化、 大数据、 人工智能、 网络安全研究, (Tel)86-13564620527(E-mail)power_ko@ 126. com
  • 作者简介:张丽杰(1983— ), 女, 山东烟台人, 海军军医大学第一附属医院工程师, 主要从事医疗信息化、 大数据、 人工智能、 网络 安全研究, (Tel)86-13764040619(E-mail)Jellyzhang. ok@ 163. com
  • 基金资助:
     国家自然科学基金资助项目(2370483); 上海卫生厅基金资助项目( SHDC2024CRX010) ; 上海市肾癌 COC 建设基金资助 项目(SHDC22024222) 

Extraction Method of Multi-Dimensional Feature for off-Line Diagnosis and Treatment Information in Data Mining Technology

 ZHANG Lijie 1 , LU Jiangdong 2 , QIU Jing 1   

  1. 1. Department of Information, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China; 2. School of Computer Science, Naval Medical University, Shanghai 200433, China
  • Received:2025-06-09 Online:2026-01-31 Published:2026-02-04

摘要: 针对线上诊疗信息体量的暴增致使诊疗信息处理与应用难度大幅提升, 极大地阻碍在线诊疗系统的发展 的问题, 提出数据挖掘技术下线上诊疗信息多维特征提取方法。 通过清洗、 集成与缺失值填充预处理线上诊疗 信息, 并引入蚁群算法多维聚类线上诊疗信息, 基于卷积神经网络制定线上诊疗信息多维特征提取框架, 通过 卷积、 池化与全连接层协同作用实现线上诊疗信息多维特征的有效提取。 实验结果表明, 应用该方法获得的 线上诊疗信息多维聚类结果中患者基本信息维度类别、 症状信息维度类别、 治疗过程记录信息维度类别与随访 信息维度类别之间界限显著, 患者治疗过程记录信息特征 患者治疗时间与实际结果一致, 可以有效提高 诊疗信息的处理效率和准确性, 为在线诊疗系统发展提供实用的技术支持。

关键词: 多维特征提取, 线上诊疗信息, 多维特征融合, 信息预处理, 数据挖掘技术, 信息聚类

Abstract: Due to the explosion of online diagnosis and treatment information, the processing and application of diagnosis and treatment information are greatly increased, which greatly hinders the development of online diagnosis and treatment system. Therefore, the research on multi-dimensional feature extraction method of online diagnosis and treatment information based on data mining technology is proposed. The pretreatment online diagnosis and treatment information is filled by cleaning, integration and missing values. The data mining technology-ant colony algorithm is introduced to multi-dimensionally cluster online diagnosis and treatment information. Based on the data mining technology-convolutional neural network, the multi-dimensional feature extraction framework of online diagnosis and treatment information is formulated, and the multi-dimensional features of online diagnosis and treatment information are effectively extracted through the synergy of convolution layer, pooling layer and full connection layer. The experimental results show that there are significant boundaries between the dimensions of patient basic information, patient symptom information, patient treatment process record information and patient follow-up information in the multidimensional clustering results of online diagnosis and treatment information obtained by the proposed method. The characteristics of patient treatment process record information and patient treatment time are consistent with the actual results, which can effectively improve the efficiency and accuracy of diagnosis and treatment information processing and provide practical technical support for the development of online diagnosis and treatment system.

Key words: multi-dimensional feature extraction, online diagnosis and treatment information, multi-dimensional feature fusion, information preprocessing, data mining technology, information clustering

中图分类号: 

  • TP391