吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 143-151.

• • 上一篇    下一篇

用于推荐系统的全局关系感知超图注意力网络

袁 满, 刘星彤, 袁靖舒   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2024-12-24 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:袁满(1965— ), 男, 吉林农安人, 东北石油大学教授, 博士生导师, 主要从事知识工程和知识图谱研究, ( Tel) 86- 15765959186(E-mail)yuanman@ nepu. edu. cn
  • 基金资助:
    东北石油大学人才引进科研启动经费基金资助项目(2023KQ17) 

Hypergraph Attention Network of Global Relational-Aware for Recommender Systems

YUAN Man, LIU Xingtong, YUAN Jingshu   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-12-24 Online:2026-01-31 Published:2026-02-04

摘要: 针对传统的图神经网络虽然可以表征用户与物品之间的交互, 但通常局限于成对的二元关系, 难以充分 建模用户和物品之间的高阶关联问题, 提出了一种用于推荐系统的全局关系感知超图注意力网络GR-HGAN (Global Relational-aware Hypergraph Attention Network for Recommender Systems)。 首先, 采用超图结构, 允许 一个超边同时连接多个用户和物品, 自然地刻画出多方交互的高阶关联。 然后, 利用超图注意力机制, 关注 图中不同邻居节点与当前目标节点的关联程度, 提升重要节点在特征聚合中的影响力。 最后, 结合全局超图和 局部子图的消息传播机制, 有效学习全局视角下节点之间高阶关联的同时融合局部子图中的重要信息, 进一步 提升节点嵌入的表示能力。 在广泛使用的数据集 Yelp, MovieLens 和 Amazon 上进行的大量实验证明, GR-HGAN优于先进的推荐方法。

关键词: 推荐系统, 超图神经网络, 超图注意力

Abstract: Traditional GNNs(Graph Neural Networks), while capable of representing interactions between users and items, are typically limited to pairwise binary relationships, making it challenging to fully model high-order associations between users and items. To address this issue, a GR-HGAN(Global Relational-aware Hypergraph Attention Network for Recommender Systems) is proposed. First, GR-HGAN adopts a hypergraph structure that allows a single hyperedge to simultaneously connect multiple users and items, naturally capturing high-order associations in multi-party interactions. Then, GR-HGAN uses a hypergraph attention mechanism to focus on the relevance of different neighboring nodes to the target node, enhancing the influence of significant nodes in feature aggregation. Finally, by integrating a message-passing mechanism from both the global hypergraph and local subgraphs, it effectively learns high-order associations between nodes from a global perspective while incorporating critical information from local subgraphs, further improving the representation capability of node embeddings. Extensive experiments conducted on widely used datasets such as Yelp, MovieLens, and Amazon demonstrate that GR-HGAN outperforms state-of-the-art recommendation methods. 

Key words: recommender system, hypergraph neural network, hypergraph attention

中图分类号: 

  • TP311