吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 136-142.

• • 上一篇    下一篇

基于改进 Retinanet 的腹腔镜手术器械检测算法

王新颖, 孙文佳   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2025-01-02 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:王新颖(1979— ), 女, 长春人, 长春工业大学副教授, 主要从事图像处理和数据挖掘等研究, ( Tel) 86-15943029559 (E-mail)wangxinying@ ccut. edu. cn
  • 基金资助:
    吉林省发改委工业技术研发专项基金资助项目 ( 2023C042-6 ); 吉林省教育厅科技研究计划重点基金资助项目 (JJKH20230763KJ) 

Laparoscopic Surgical Instrument Detection Algorithm Based on Improved Retinanet

WANG Xinying, SUN Wenjia   

  1. College of Computer Science and Engineering, Changchun University of Technology, Changchu 130012, China
  • Received:2025-01-02 Online:2026-01-31 Published:2026-02-04

摘要:  针对在腹腔镜手术器械检测领域现有的目标检测网络利用多尺度特征不足, 以及检测模型通过微调方法 适应下游任务的局限问题, 提出一种基于改进 Retinanet 的腹腔镜手术器械检测算法。 该算法包括促进模型对 下游任务高效适应的自适应提示微调模块, 以及为强化模型对不同尺寸目标信息捕捉能力的 DR-Unet(Deep Residual UNet) 模块和 RFA(Residual Feature Augmentation)模块。 在腹腔镜手术器械检测数据集上的实验结果 表明, 所提算法在 IOU(Intersection over Union)为 0. 5 时, 比基线模型提高了 1. 1% , mAP@ 0. 5 达到了 97. 3% , 检测效果优于众多其他先进方法, 在手术器械检测等实际应用场景中展现出显著的价值与意义。

关键词: 目标检测, 腹腔镜, 提示学习, 多尺度特征, Retinanet 网络, Transformer 架构, UNet 网络

Abstract:  In the field of laparoscopic surgical instrument detection, aiming at the insufficient utilization of multi- scale features in the existing object detection networks and the limitations of the existing detection models in adapting to downstream tasks through fine-tuning methods, a laparoscopic surgical instrument detection algorithm based on the improved Retinanet is proposed. The algorithm includes an adaptive prompt fine-tuning module that promotes the efficient adaptation of the model to downstream tasks, the DR-UNet(Deep Residual UNet) module and the RFA(Residual Feature Augmentation) module that enhance the model’s ability to capture information of targets of different sizes. Experiments on the laparoscopic surgical instrument detection dataset show that the proposed algorithm achieves 1. 1% improvement over the baseline model at an IOU(Intersection over Union) of 0. 5, with an mAP @ 0. 5 of 97. 3% . The detection performance is superior to many other state-of-the-art methods, demonstrating significant value and importance in practical applications such as surgical instrument detection. 

Key words: object detection, laparoscopic surgery, prompt learning, multi-scale features, Retinanet, Transformer, UNet

中图分类号: 

  •