吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 160-166.

• • 上一篇    下一篇

基于深度学习的思政内容摘要生成

吕妍欣   

  1. 吉林交通职业技术学院 汽车工程学院, 长春 130015
  • 收稿日期:2025-07-19 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:吕妍欣(1998— ), 女, 长春人, 吉林交通职业技术学院助教, 主要从事思政教育与美育研究, ( Tel) 86-13069207933 (E-mail)2980985133@ qq. com
  • 基金资助:
    吉林省自然科学基金资助项目(20200201157JC); 吉林省教育厅科技基金资助项目(JJKH20191295KJ) 

Deep Learning Based Summarization of Ideological and Political Content

LÜ Yanxin   

  1. School of Automotive Engineering, Jilin College of Transportation Technology, Changchun 130015, China
  • Received:2025-07-19 Online:2026-01-31 Published:2026-02-04

摘要: 为解决信息量爆炸背景下思政案例文本篇幅长、 议题复杂、 冗余信息多导致的人工摘要效率低下问题, 以及现有纯抽取式模型忽略语句间逻辑关联、 纯生成式模型易偏离政策导向的缺陷, 提出一种聚类到句子算法 (CLUSTER2SENT: CLUSTER to SENTence)。 该算法通过提取与摘要相关的重要话语-对重要话语进行聚类分 析-为每个聚类生成摘要文本的 3 步流程实现思政案例摘要自动生成。 实验结果表明, CLUSTER2SENT 算法在 ROUGE-1 指标比纯抽取式对应模型高出 8 个百分点, 证实了该算法的有效性; 同时, 在构建摘要语料库时创建 节结构, 可显著提升模型性能。

关键词: 思政案例, 抽取式方法, 生成式方法, 节结构, CLUSTER2SENT 算法

Abstract: To address the low efficiency of manual summarization caused by lengthy texts, complex topics, and excessive redundant information in ideological and political case texts amid the information explosion, and the limitations of existing methods-purely extractive models overlook the logical connections between sentences, while purely generative models tend to deviate from policy guidance, a CLUSTER2SENT(CLUSTER to SENTence) algorithm is proposed. This algorithm realizes the automatic generation of summaries for ideological and political cases through a three step process: 1) extracting important utterances relevant to each part of the summary, 2) performing clustering analysis on the extracted important utterances, 3) generating summary text for each cluster. Experimental results show that the CLUSTER2SENT algorithm outperforms its purely extractive counterpart by 8 percentage points in the ROUGE-1 metric, which verifies the effectiveness of the algorithm. The study indicates that constructing a section structure when building a summary corpus can significantly improve model performance.

Key words: ideological and political education cases, extractive method, generative method, section structure, CLUSTER2SENT algorithm

中图分类号: 

  • TP391