吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 167-177.

• • 上一篇    下一篇

基于残差神经网络和二分法的混凝土路面裂缝检测与分类

于 志1 , 吴 琼2 , 宋 维2 , 司君蕊2 , 唐昌华2 , 时庆涛   

  1. 1. 长春大学 信息化建设服务中心, 长春 130022; 2. 长春工业大学人文信息学院 计算机科学与工程学院, 长春 130122
  • 收稿日期:2025-01-10 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 宋维(1995— ), 男, 内蒙古赤峰人, 长春工业大学人文信息学院助教, 主要从事知识图谱和图像检测研究, (Tel)86-13171138713 (E-mail) 1748442466@ qq. com
  • 作者简介:于志(1994— ), 男, 长春人, 长春大学助理工程师, 主要从事图像检测、 分割和数据挖掘研究, ( Tel)86-13844822667 (E-mail)651749392@ qq. com; 吴琼(1977— ), 女, 辽宁营口人, 长春工业大学人文信息学院教授, 博士, 硕士生导师, 主要从事人工智能及算法优化研究, (Tel)86-15543128585(E-mail)wu_qiong2014@ qq. com
  • 基金资助:
    吉林省教育厅科学技术研究课题基金资助项目(JJKH20241610KJ) 

Crack Detection and Classification of Concrete Pavement Based on Residual Neural Network and Dichotomy 

YU Zhi 1 , WU Qiong 2 , SONG Wei 2 , SI Junrui 2 , TANG Changhua 2 , SHI Qingtao 2   

  1. 1. Informatization Construction Service Center, Changchun University, Changchun 130022, China; 2. School of Computer Science and Engineering, College of Humanities and Information in Changchun University of Technology, Changchun 130122, China
  • Received:2025-01-10 Online:2026-01-31 Published:2026-02-04

摘要: 针对现有道路裂缝分类方法多依赖人工测量导致效率低下问题, 提出了一种道路裂缝检测模型。 首先 基于ResNet50 架构提出了 COTECANet(Contextual Transformer Efficient Channel Attention Network)模型, 其性能 优于所对比的其他深度学习模型; 然后针对该模型的检测结果, 对存在路面裂缝的道路, 基于二分法计算图像 裂缝轮廓的最大内切圆半径, 进而得到道路裂缝的最大像素宽度; 最后根据相应比例换算可得到测量路面裂缝 的实际宽度, 并依据国家标准对道路裂缝的破损程度进行分类定级。 实验结果表明, COTECANet 模型可有效 检测路面裂缝, 其对道路裂缝识别的准确率达到 99. 8% 。 该方法为道路养护提供了更加科学有效的技术支持, 具有重要的理论和工程应用前景。

关键词: 路面裂缝, 残差神经网络, 二分法, 裂缝最大内切圆半径, 裂缝分级评估

Abstract:  In response to the inefficiency caused by the reliance on manual measurement in existing road crack classification methods, a road crack detection model is proposed. This model improves detection accuracy by enhancing the detection algorithm and employs a bisection method to precisely measure the actual width of cracks, thereby enabling automatic classification and grading of crack damage levels. Specifically, a COTECANet ( Contextual Transformer Efficient Channel Attention Network ) model based on the ResNet50 architecture is first introduced, which outperforms other compared deep learning models. For the detection results of this model, the maximum inscribed circle radius of the crack contours in the image is calculated using the bisection method for roads with pavement cracks, thereby obtaining the maximum pixel width of the road cracks. The actual width of the pavement cracks can be derived by converting the measurements according to the corresponding scale, and the damage level of the road cracks is classified and graded based on national standards. Experimental results demonstrate that the COTECANet model can effectively detect pavement cracks, achieving an accuracy rate of 99. 8% in road crack identification. The above method provides more scientific and efficient technical support for road maintenance, with significant theoretical and engineering application prospects.

Key words: road cracks, residual neural networks, dichotomy, radius of the largest inscribed circle of the crack, crack classification and evaluation

中图分类号: 

  • TP391