吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 213-218.

• • 上一篇    下一篇

面向多服务价值链的数字媒体资源推荐算法

张跃华1,2   

  1. 1. 西华师范大学 美术学院, 四川 南充 6370013; 2. 四川机电职业技术学院 信息工程学院, 四川 攀枝花 617000
  • 收稿日期:2024-01-24 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:张跃华(1985— ), 女, 四川南充人, 西华师范大学讲师, 主要从事数字媒体技术和艺术研究, ( Tel) 86-18618251406 (E-mail)zyh05111622@ 163. com
  • 基金资助:
    教育部高校学生司第二期供需对接就业育人基金资助项目(20230106505) 

Digital Media Resource Recommendation Algorithm for Multi Service Value Chain

ZHANG Yuehua 1,2    

  1. 1. College of Fine Aets, China West Normal University, Nanchong 6370013, China; 2. School of Information Engineering, Sichuan Mechanical and Electrical Vocational and Technical College, Panzhihua 617000, China
  • Received:2024-01-24 Online:2026-01-31 Published:2026-02-04

摘要: 为了让企业在多服务价值链的海量数据资源中快速得到所需数字媒体资源, 设计一种面向多服务价值链 的数字媒体资源推荐算法。 建立数字媒体资源数据集, 融合元学习概念, 采用最优聚类法划分不同时段的数字 媒体资源属性, 通过一致性矩阵推算用户被划分为相同簇的概率, 在相空间重构下组建多服务价值链数字资源 推荐目标函数; 引入潜在狄利克雷分配法求解目标函数, 并利用惩罚因子处理数字媒体资源推荐长尾问题, 依照用户兴趣度高低对资源排序, 实现高精度数字媒体资源推荐。 实验结果表明, 所提算法的用户偏好评估 准确性和推荐覆盖率较高, 有效提升了数字媒体资源推荐质量, 为企业的良性发展带来新的机遇。

关键词: 资源推荐算法, 信息聚类, 覆盖率, 多服务价值链, 数字媒体

Abstract:  In order to enable enterprises to quickly obtain the required digital media resources from the massive data resources in the multi service value chain, a digital media resource recommendation algorithm for the multi service value chain is designed. A dataset of digital media resources is established, the concept of meta learning is integrated, optimal clustering method is used to partition the attributes of digital media resources in different time periods, the probability of users being divided into the same cluster through consistency matrix is calculated, and a multi service value chain digital resource recommendation objective function is constructed under phase space reconstruction. The potential Dirichlet allocation method is introduced to solve the objective function, and penalty factors are used to handle the long tail problem of digital media resource recommendation. Resources are arranged according to user interest levels to achieve high-precision digital media resource recommendation. The experimental results show that the proposed algorithm has high accuracy in user preference evaluation and recommendation coverage, effectively improving the quality of digital media resource recommendations and bringing new opportunities for the healthy development of enterprises. 

Key words: resource recommendation algorithm, information clustering, coverage rate, multi service value chain, digital media

中图分类号: 

  • TP399