吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 219-225.

• • 上一篇    下一篇

频谱特征统一条件下超声仪器轨迹球机械故障诊断方法

王可力   

  1. 绍兴文理学院 附属医院, 浙江 绍兴 312099
  • 收稿日期:2024-05-13 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:王可力( 1988— ), 男, 浙江绍兴人, 绍兴文理学院附属医院工程师, 硕士, 主要从事医疗器械研究, ( Tel) 86- 13858482611(E-mail)wjj. uknow@ live. cn
  • 基金资助:
    绍兴市卫生计生科技计划基金资助项目(2018QN01023)

Diagnostic Method for Mechanical Faults of Ultrasonic Instrument Trajectory Balls under Condition of Unified Spectral Characteristics

WANG Keli    

  1. Affiliated Hospital, Shaoxing University, Shaoxing 312099, China
  • Received:2024-05-13 Online:2026-01-31 Published:2026-02-04

摘要: 由于目前超声仪器轨迹球机械故障检测方法在特征分类时, 需要通过划分多个类别才能完成故障诊断。 虽然多类别模式能提升诊断效率, 但这种多类别的故障识别模式易发生类间类似故障的循环迭代比较, 致使识 别准确性下降。 为此, 利用轨迹球机械故障频谱特征可融合的特点, 设计频谱特征统一条件下超声仪器轨迹球 机械故障诊断方法。 通过频谱分析技术对超声仪器轨迹球信号进行频谱分析, 获取高精度的幅值谱和相位谱; 将信号幅值和相位信息融合处理, 在超声仪器轨迹球的每个监测断面上组建二维全息谱, 提取故障信号特征。 通过提取的特征为每个样本随机设定标签组建样本库, 利用样本库对深度神经网络( DNN: Deep Neural Network)进行训练, 经过 DNN 训练和测试迭代, 将含有相似特征的故障样本聚集到同一个类中, 最终实现故障 诊断。 实验结果表明, 所提方法可以精准诊断出超声仪器轨迹球机械故障, 保证超声仪器的稳定运行。

关键词: 频谱分析, 超声仪器, 轨迹球, 机械故障, 统一类内, 深度神经网络

Abstract: The current research on mechanical fault detection of ultrasonic instrument trajectory balls requires dividing multiple categories in feature classification to complete fault diagnosis. Although the multi class pattern can improve diagnostic efficiency, this multi class fault recognition pattern is prone to cyclic iterative comparisons of similar faults between classes, resulting in a decrease in recognition accuracy. Utilizing the feature of fusible spectral features of mechanical faults in trackballs, a diagnostic method using ultrasonic instruments under unified spectral features is designed. By using spectrum analysis technology to perform spectrum analysis on the trajectory ball signal of ultrasonic instruments, high-precision amplitude and phase spectra are obtained. By fusing signal amplitude and phase information, a two-dimensional holographic spectrum is constructed on various monitoring cross-sections of the ultrasonic instrument trajectory ball to extract fault signal features. By randomly assigning labels to each sample based on the extracted features, a sample library is constructed to train a deep neural network (DNN: Deep Neural Network). After DNN training and testing iterations, fault samples with similar features are aggregated into the same class, ultimately achieving fault diagnosis. The experimental results show that the proposed method can accurately diagnose mechanical faults in the trajectory ball of the ultrasound instrument, ensuring the stable operation of the ultrasound instrument. 

Key words: spectral analysis, ultrasonic instruments, trajectory ball, mechanical failure, within the unified category, deep neural networks(DNN)

中图分类号: 

  • TP183