J4 ›› 2012, Vol. 30 ›› Issue (2): 203-206.
于晓鹏1|曹春红2|3
YU Xiao-peng1,CAO Chun-hong2|3
摘要:
为提高求解几何约束问题的效率和收敛性,将几何约束问题等价为求解非线性方程组问题。并将约束问题转化为一个优化问题,采用基于混洗蛙跳(SFLA:Shuffled Frog Leaping Algorithm)和粒子群优化(PSO:Particle Swarm Optimization)算法求解该问题。SFLA-PSO算法采用将SFLA和PSO二者相结合的方法,利用PSO算法进行族群局部搜索,利用SFLA的多种群的进化方法进行族群的混选,相互取长补短,以达到收敛速度快和全局搜索的目的。实验表明,该方法可以提高几何约束求解的效率和收敛性。
中图分类号: