J4 ›› 2012, Vol. 30 ›› Issue (2): 218-222.

• 论文 • 上一篇    

参数优化支持向量机的人参价格预测模型

马建华1a|张星奇2|张辉1b   

  1. 1.吉林铁路职业技术学院 a.铁道工程系;b.电气工程系|吉林 吉林132002;2.吉林大学 生命科学学院,长春 130012
  • 收稿日期:2011-10-29 出版日期:2012-03-28 发布日期:2012-04-19
  • 作者简介:马建华(1972—)|男|吉林省吉林市人|吉林铁路职业技术学院副教授|主要从事电气自动化教学与研究|(Tel)86-13704424400(E-mail)ma-jianhua2001@sina.com。

Ginseng Price |Prediction Model Based on Support Vector Machine and Particle Swarm Optimization

MA Jian-hua1a,ZHANG Xing-qi2,ZHANG Hui1b   

  1. 1a.Department of Railway Engineering;1b.Department of Electrical Engineering,Jilin |Railway Career Technical College,Jilin 132002,China;2.College of Life Science,Jilin |University|Changchun 130012,China
  • Received:2011-10-29 Online:2012-03-28 Published:2012-04-19

摘要:

为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011
年12月林下参的价格预测模型。利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%。

关键词: 支持向量机, 粒子群算法, 人参价格

Abstract:

Through the analysis of the influence of ginseng price factors,we predict the ginseng price.We applied K-fold cross-validation method,utilized the PSO (Particle Swarm Optimization) to reach the optimum of penalty parameter c and value of ggamma,and  built the forecast model of the ginseng price from January 2010 to December 2011.The optimized value by PSO for penalty parameter c is 3.6974,the prediction correlation coefficient for prediction set 1 by the SVM(Support Vector Machine)of radial basis kernel function is 97.316%,the results are satisfactory,and we can predict ginseng price from January to June 2012 with this model.

Key words: support vector machine, particle swarm optimization, ginseng prices

中图分类号: 

  • TP273