吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

融合概念格约简的中文领域本体学习方法

侯丽鑫a, 郑山红a, 贺海涛a, 赵辉a, 韩冬b   

  1. 长春工业大学 a. 计算机科学与工程学院; b. 软件职业技术学院, 长春 130012
  • 出版日期:2013-11-26 发布日期:2014-01-06
  • 作者简介:侯丽鑫(1986—), 女, 山东菏泽人, 长春工业大学硕士研究生, 主要从事本体、 智能系统和语义网研究, (Tel)86-13341593698(E-mail)houlixinmingxuan@126.com;通讯作者: 郑山红(1970—), 女(朝鲜族), 长春人, 长春工业大学副教授, 博士, 硕士生导师, 主要从事智能系统与语义网研究, (Tel)86-13756476636(E-mail)bioszsh2007@yaoo.cn。

Concept Lattice Reduction Application in Field of Chinese Domain Ontology Learning

HOU Li-xina, ZHENG Shan-honga, HE Hai-taoa, ZHAO Huia, HAN Dongb   

  1. a. College of Computer Science and Engineering; b. College of Software Vocational Technology, Changchun University of Technology, Changchun 130012, China
  • Online:2013-11-26 Published:2014-01-06

摘要:

在基于形式概念分析的中文领域本体学习中, 为提高概念格构建效率, 将概念格约简理论应用于概念格构建中。首先对基于语义依存分析获取的形式背景进行对象和属性约简, 然后基于约简的形式背景采用Godin算法构造概念格, 最后根据修复定理修复约简概念格, 得到完整的概念格。通过有关对萝藦科植物的文本学习, 得到一个萝藦科植物领域本体。实验结果表明, 引入概念格约简理论, 概念格的构建效率提高70%, 进而提高了领域本体构建的效率。

关键词: 形式概念分析, 概念格约简, 语义依存分析, 领域本体学习

Abstract:

In order to improve the efficiency of building concept lattice in Chinese domain ontology learning based on formal concept analysis, we applied the concept lattice reduction theory to the process of building concept lattice. The main idea is that we reduce the objects and attributes of the obtained formal context which is based on semantic dependency analysis, adopte the Godin algorithm to construct concept lattice based on formal context reduced, and repaire the concept lattice with the reparation theories. The article takes the asclepiadaceae plants ontology construction as an example to verify this method. The experiment results show that the efficiency of concept lattice construction increase by 70%. It improves the efficiency of ontology construction.

Key words: formal concept analysis, concept lattice reduction, semantic dependency analysis, domain ontology learning

中图分类号: 

  • TP39