吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

改进的基于邻域隶属度约束的FCM图像分割算法

仲崇峰a, 刘智a, 杨阳a, 刘丹b   

  1. 长春理工大学 a. 电子信息工程学院; b. 光电工程学院, 长春 130022
  • 出版日期:2013-11-26 发布日期:2014-01-06
  • 作者简介:仲崇峰(1989—), 男, 江苏睢宁人, 长春理工大学硕士研究生, 主要从事图像处理与分析研究, (Tel)86-13630599320(E-mail)zcf881027@126.com; 刘智(1971—), 男, 河北定州人, 长春理工大学教授, 博士, 硕士生导师, 主要从事固态成像及激光偏振调制与解调技术研究, (Tel)86-18946557983(E-mail)liuzhi@cust.edu.cn。

Improved FCM Algorithm Based on Neighboring Membership Constraint for Image Segmentation

ZHONG Chong-fenga, LIU Zhia, YANG Yanga, LIU Danb   

  1. a. College of Electronic and Information Engineering; b. College of Photo-Electronic Engineering,Changchun University of Science and Technology, Changchun 130022, China
  • Online:2013-11-26 Published:2014-01-06

摘要:

传统模糊C均值(FCM: Fuzzy C-Means)聚类算法应用于图像分割时, 因对噪声较敏感而达不到理想的分割效果。为此, 提出了改进的基于邻域隶属度约束的FCM图像分割算法。该算法通过对FCM目标函数添加空间邻域信息约束隶属度函数, 提高对图像噪声的鲁棒性, 使分割的结果更加符合期望。实验结果表明, 该算法对噪声具有较强的抑制能力, 图像分割时能获得较好的分割效果。

关键词: 模糊C均值, 图像分割, 空间邻域信息, 噪声

Abstract:

When traditional FCM(Fuzzy C-Means) clustering algorithm applied to image segmentation, because of not combining with image spatial information, it is sensitive to noise, can not produce ideal image segmentation. An improved FCM algorithm based on neighboring membership constraint for image segmentation is proposed, which improves the robustness of image noise through adding the neighborhood spatial information to FCM objective function to constrain the membership function. The results of segmentation are expected. Experimental results indicate that this algorithm has a strong ability to inhibit noise, and can get better segmentation effectiveness.

Key words: fuzzy C-means(FCM), image segmentation, spatial neighboring information, noise

中图分类号: 

  • TP391