吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于光谱融合的手掌异常纹识别

刘 闯, 刘 富, 康 冰, 代立波   

  1. 吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2017-02-14 出版日期:2017-05-25 发布日期:2017-06-07
  • 作者简介: 刘闯(1991— ), 男, 吉林伊通人, 吉林大学硕士研究生, 主要从事模式识别与智能系统研究, (Tel)86-18443153424(E- mail)lckycg2@163. com; 刘富(1968— ), 男, 吉林农安人, 吉林大学教授, 博士生导师, 主要从事模式识别与智能系统 研究, (Tel)86-13610708679(E-mail)liufu@ jlu. edu. cn。
  • 基金资助:
    吉林省重点科技攻关基金资助项目(20140204046)

Abnormal Palmprint Recognition Based on Spectral Fusion

LIU Chuang, LIU Fu, KANG Bing, DAI Libo   

  1. College of Communications Engineering, Jilin University, Changchun 130022, China
  • Received:2017-02-14 Online:2017-05-25 Published:2017-06-07

摘要: 针对现有掌部封闭型病理纹识别算法提取的线特征较少、 识别率较低的问题, 提出一种基于非下采样剪
切波变换(NSST: Nonsubsample Shearlet Transform)域光谱融合的手掌异常纹识别算法。 首先, 选取融合效果最
佳的多光谱掌纹波段组合, 并在 NSST 域内进行多尺度、 多方向的分解; 其次, 根据分解各层子带图像的特点
设计融合规则进行相应系数矩阵的融合, 再通过 NSST 逆变换和形态学处理提取精细纹路特征; 然后, 利用像
素点的度特点寻找符合要求的闭合纹线回路; 最后, 采用一种基于矩形度和偏心率等形状描述符的方法识别封
闭型异常纹。 实验结果表明, 该识别方法能提取丰富的掌纹线特征, 同时, 还可准确识别 6 种不同类型的封闭
型病理纹, 识别率可达 90%以上。

关键词: 非下采样 shearlet 变换, 光谱融合, 异常纹, 掌纹, 闭合回路

Abstract:  In order to solve the shortcoming of fewer extracted line feature and lower recognition rates of
pathologic palmprint recognition algorithm, we proposed a recognition algorithm of pathologic palmprint based on
spectral fusion in non-subsampled shearlet domain. Firstly, the best spectral fused combination of multispectral
palmprint is selected. And it is decomposed to the multi-directions, multi-scales in non-subsampled shearlet
domain. Next, according to all levels characteristics of sub-bands images which had been decomposed, a new
fusion rule is designed to fuse the corresponding coefficient matrices. The fine lines feature of palmprint can be
obtained by the inverse transformation of the NSST(Nonsubsample Shearlet Transform) and the process of
mathematical morphology. Then the satisfactory closed circuits are searched by degree feature of pixels. Finally,
we proposed a method of combining the shape descriptors based on rectangle degree and eccentricity to recognize
closed pathologic palmprint. Experimental results show that this algorithm can extract rich feature of the
palmprint line, and can recognize six different types of closed pathologic palmprints accurately and the
recognition rate is more than 90%.

Key words: spectral fusion, palmprint, nonsubsample shearlet transform ( NSST ), closed circuit, pathologic palmprint

中图分类号: 

  • TP391. 4