吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (5): 692-696.
郭卉笑 a , 王鏐璞 b
GUO Huixiao a , WANG Liupu b
摘要: 为实现视频纹理的有效识别, 提出一种基于 LBP(Local Binary Patterns)和 KNN(k-Nearest Neighbor)的视频纹理识别算法。 该算法将视频纹理视为一个图像纹理集合, 通过多个图像纹理集合的方式表示。 由于可计算任意两幅纹理图像的相似度, 对于两个视频纹理, 可以计算两个图像纹理集合中所有元素之间的相似度, 将这些相似度中的最小值作为这两个视频纹理的相似度, 若要实现视频纹理的识别, 则可通过 KNN 算法实现分类与匹配。 通过在 DynTex 动态纹理数据库中的相关实验, 证明了该算法的有效性。
中图分类号: