吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 37-51.doi: 10.13278/j.cnki.jjuese.201501104

• 地质与资源 • 上一篇    下一篇

渤南洼陷超压系统划分及结构特征

罗胜元1, 何生2, 金秋月3, 杨睿之2, 张君立2   

  1. 1. 中国地质调查局武汉地质调查中心, 武汉 430205;
    2. 中国地质大学构造与油气资源教育部重点实验室, 武汉 430074;
    3. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057
  • 收稿日期:2014-05-10 发布日期:2015-01-26
  • 作者简介:罗胜元(1986), 男, 博士研究生, 主要从事成油体系与成藏动力学方面的研究, E-mail:loshyv@163.com
  • 基金资助:

    中国地质调查局国土资源大调查项目(12120114053701);国家油气重大专项项目(2011ZX05006-002)

Overpressure System Classification and Structure Characteristic in Bonan Sag

Luo Shengyuan1, He Sheng2, Jin Qiuyue3, Yang Ruizhi2, Zhang Junli2   

  1. 1. Wuhan Center, China Geological Survey, Wuhan 430205, China;
    2. Key Laboratory of Tectonics and Petroleum Resource of Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    3. Zhanjiang Branch, CNOOC, Zhanjiang 524057, Guangdong, China
  • Received:2014-05-10 Published:2015-01-26

摘要:

沾化凹陷的渤南洼陷为富油洼陷, 实测超压出现在沙三、四段, 埋深为2 300~4 200 m。综合大量的地压测试、测井和地质资料, 研究了现今超压分布和超压的测井及地震响应, 对单井、剖面超压发育特征和影响超压结构的地质要素进行了深入分析。超压带内泥岩声波时差偏离正常趋势线, 而泥岩密度没有明显偏低的响应。研究表明:渤南洼陷存在3个超压系统, 上超压系统为浅层沙一段发育的弱超压, 沙三段中下部的强超压构成中超压系统的主体, 下超压系统位于沙四段中;砂质质量分数大于20%的沙二段为常压。超压源层、低渗封隔层和断裂构造带3类地质要素控制着超压幅度和超压结构。泥质源岩产生的多相流体是形成超压系统的物质基础;沙一段压实泥岩、沙三中亚段的互层致密砂岩和泥岩、沙四上亚段的膏盐层作为压力系统封隔层, 对超压系统的形成和分布起到控制作用;断裂具有泄压和封堵双重性, 对地层压力和油气层横向分布具有重要影响。利用地震层速度计算得到了渤南洼陷现今大规模超压系统分布特征的整体认识。

关键词: 渤南洼陷, 测井响应, 超压系统, 超压结构, 济阳坳陷

Abstract:

Bonan sag is a typical overpressured sag with abundant hydrocarbon resources, and present-day overpressures commonly occur in the Eocene third and fourth members of Shahejie Formation (Es3 and Es4) at depths between 2 300 m and 4 200 m. By assessing present-day pressure distribution and response from drilling stem test (DST), wire logging and geological date, the characteristics of overpressure and geological factors affecting abnormal pressure are discussed in detail. Sonic transit times of mudstones deviate from the normal compaction trend line to the overpressured area revealed by drilling, but density has no obvious response. On the whole, three overpressure systems have been identified, including an upper system distribution in Es1, a middle reservoir overpressure with main part in lower Es3, and a lower reservoir overpressure in the upper part of Es4. The second member in which sand contents are more than 20% generally shows normal pressure. This study indicates that sourced rocks, low permeability sealing rocks, and fault structure are the three major factors controlled the range of overpressure and its structure. Multiphase fluid from mud-rich sources rock composes material basis of an overpressured system. Compacted mudstone within Es1, and cemented sandstone interbeded with mudstone in Es3, as well as mudstone and gypsum beds distribution in the upper part of Es4, formed respectively barrier of each system, can also control the distribution and construction change of overpressures system. Fault structures, which has great influence on formation pressure and distribution of oil, show a complex and duality fault-fluid flow behavior. The optimized and calibrated seismic intervai-velocity data, in conjunction with measured pressure, have been used with considerable success in overall recognition of large-scale overpressured system in Bonan sag.

Key words: Bonan sag, well-log response, overpressure system, overpressure structure, Jiyang depression

中图分类号: 

  • P618.13

[1] 郝芳, 董伟良. 沉积盆地超压系统演化、流体流动与成藏机理[J]. 地球科学进展, 2001, 16(1):79-85. Hao Fang, Dong Weiliang. Evolution of Fluid Flow and Petroleum Accumulation in Overpressured Systems in Sedimentary Basins[J]. Advance in Earth Sciences, 2001, 16(1):79-85.

[2] 张善文, 曾溅辉, 肖焕钦, 等. 济阳坳陷岩性油气藏充满度大小及分布特征[J]. 地质论评, 2004, 50(4):365-369. Zhang Shanwen, Zeng Jianhui, Xiao Huanqin, et al. Oil Gas Filling Degree and Distribution Characteristics of the Lithological Oil Gas Reservoir in the Jiyang Depression[J]. Geological Review, 2004, 50(4):365-369.

[3] 李丕龙, 金之钧, 张善文, 等. 济阳坳陷油气勘探现状及主要研究进展[J]. 石油勘探与开发, 2003, 30(3):1-4. Li Pilong, Jin Zhijun, Zhang Shanwen, et al. The Present Research Atatus and Progress of Petroleum Exploration in the Jiyang Depression[J]. Petroleum Exploration and Development, 2003, 30(3):1-4.

[4] Eaton B A. Graphical Method Predicts Geopressures Worldwide[J]. World Oil, 1976, 183(1):100-104.

[5] 王振峰, 罗晓容.莺琼盆地高温高压地层钻井压力与检测技术研究[M]. 北京:石油工业出版社, 2004. Wang Zhenfeng, Luo Xiaorong. The Forecast and Inspect Technology Research of Drill Pressure in High Presure and High Temperature Formation in Yingqiong Basin[M]. Beijing:Petroleum Industry Press, 2004.

[6] Bradley J S, Powley D E. Pressure Compartments in Sedimentary Basins:A Review[C]//Ortoleva P J. Basin Compartments and Seals:AAPG Memoir 61. Oklahoma:AAPG, 1994:3-26.

[7] 何生, 何治亮, 杨智. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学:中国地质大学学报, 2009, 34(3):457-470. He Sheng, He Zhiliang, Yang Zhi, et al. Characteristics, Well-Log Responses and Mechanisms of Overpressures Within the Jurassic Formation in the Central Part of Junggar Basin[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(3):457-470.

[8] 刘晓峰. 评述异常压力研究中的石油地质学新思想[J]. 地球科学进展, 2003, 18(2):245-250. Liu Xiaofeng. Review of New Ideas of Petroleum Geology Associated with Abnormal Fluid Pressure System[J]. Advance in Earth Sciences, 2003, 18(2):245-250.

[9] 赵澄林, 张善文, 袁静, 等. 胜利油区沉积储层与油气[M]. 北京:石油工业出版社, 1999. Zhao Chenglin, Zhang Shanwen, Yuan Jing, et al. Sedimentary Reserves and Oil Gas of Shengli Oildom[M]. Beijing:Petroleum Industry Press, 1999.

[10] Finkbeiner T, Zoback M, Flemings P, et al. Stress, Pore Pressure, and Dynamically Constrained Hydrocarbon Columns in the South Eugene Island 330 Field, Northern Gulf of Mexico[J]. AAPG Bulletin, 2001, 85(6):1007-1031.

[11] Borge H. Modelling Generation and Dissipation of Overpressure in Sedimentary Basins:An Example from the Halten Terrace, Offshore Norway[J]. Marine and Petroleum Geology, 2002, 19(3):377-388.

[12] Cartwright J A.Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin[J]. Marine and Petroleum Geology, 1994, 11(5):587-607.

[13] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京:科学出版社, 2005. Hao Fang. Overpressure Basin Hydrocarbon Generation Dynamics and Hydrocarbon Sccumulation Mechanism[M]. Beijing:Science Press, 2005.

[14] 何生, 宋国奇, 王永诗, 等. 东营凹陷现今大规模超压系统整体分布特征及主控因素[J]. 地球科学:中国地质大学学报, 2012, 37(5):1029-1042. He Sheng, Song Guoqi, Wang Yongshi, et al. Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(5):1029-1042.

[15] 张启明, 董伟良. 中国含油气盆地中的超压体系[J]. 石油学报, 2000, 21(6):1-11. Zhang Qiming, Dong Weiliang. Overpressure System of Hydrocarbon Bearing Basins in China[J]. Acta Petrolei Sinica, 2000, 21(6):1-11.

[16] 陈中红, 查明. 断陷湖盆超压分布特征及其与油气成藏的关系[J]. 石油学报, 2008, 29(4):509-515. Chen Zhonghong, Zha Ming.Distribution Characteristics of Overpressure and Its Controlling to Hydrocarbon Accumulation in Terrigenous Faulted Basin[J]. Acta Petrolei Sinica, 2008, 29(4):509-515.

[17] Darby D, Stuart Haszeldine R, Couples G D. Pressure Cells and Pressure Seals in the UK Central Graben[J]. Marine and Petroleum Geology, 1996, 13(8):865-878.

[18] Freed R L, Peacor D R. Geopressured Shale and Sealing Effect of Smectite to Illite Transition[J]. AAPG Bulletin, 1989, 73(10):1223-1232.

[19] Swarbrick R E. Diagenesis in North Sea HPHT Clastic Reservoirs Consequences for Porosity and Overpressure Prediction[J]. Marine and Petroleum Geology, 1999, 16(4):337-353.

[20] 吕延防, 付广, 张云峰. 断层封闭性研究[M]. 北京:石油工业出版社, 2002. Lü Yanfang, Fu Guang, Zhang Yunfeng.Fault Sealing Analysis[M]. Beijing:Petroleum Industry Press, 2002.

[21] 王雅春, 王胜男. 源岩、超压和断裂空间匹配对三肇凹陷扶杨油层油成藏的控制作用[J]. 吉林大学学报:地球科学版, 2009, 39(4):656-661. Wang Yachun, Wang Shengnan. Controlling of the Match of Source Rock, Overpressure and Fault on Oil Accumulation of Fu-Yang Oil Layer in Sanzhao Depression[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(4):656-661.

[22] 罗胜元, 何生, 王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 2012, 27(2):154-164. Luo Shengyuan, He Sheng, Wang Hao. Review on Fault Internal Structure and the Influence on Fault Sealing Ability[J]. Advances in Earth Science, 2012, 27(2):154-164.

[23] Shaieb Al, Puckette Z, Abdalla J O, et al. Megacompartment Complex in the Anadarko Basin:A Completely Sealed Overpressured Phenomenon[C]//Ortoleva P J. Basin Compartments and Seals:AAPG Memoir 61. Oklahoma:AAPG, 1994:55-68.

[24] Dutta N C. Geopressure Prediction Using Seismic Data:Current Status and the Road Ahead[J]. Geophysics, 2002, 67(6):2012-2041.

[1] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[2] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[3] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 祝鹏, 林承焰, 李智强, 赵文积, 张华莲. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1862-1869.
[6] 张鹏飞, 刘惠民, 曹忠祥, 田美荣, 唐东, 马士坤. 太古宇潜山风化壳储层发育主控因素分析—以鲁西-济阳地区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1289-1298.
[7] 沈艳杰, 程日辉, 赵春满, 黄党委, 于振锋, 杨伟航. 与火山作用有关的岩系测井识别与物源分析--以松南十屋油田营城组为例[J]. J4, 2012, 42(3): 590-599.
[8] 王冠民. 济阳坳陷古近系页岩的纹层组合及成因分类[J]. J4, 2012, 42(3): 666-671.
[9] 闫伟林,范晓敏. 火成岩中网状裂缝双侧向测井响应特征[J]. J4, 2009, 39(1): 158-0162.
[10] 袁波,陈世悦,袁文芳,朱建伟. 济阳坳陷沙河街组锶硫同位素特征[J]. J4, 2008, 38(4): 613-0617.
[11] 徐振中,陈世悦,姜佩仁. 济阳坳陷早中侏罗世沉积特征与沉积模式[J]. J4, 2005, 35(06): 738-0744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!