吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 892-898.doi: 10.13278/j.cnki.jjuese.201503204

• 地质工程与环境工程 • 上一篇    下一篇

靖宇县玄武岩区矿泉水特征组分H2SiO3成因实验——以王大山泉为例

闫佰忠1, 肖长来1, 梁秀娟1, 马喆1, 危润初1,2, 吴世利3   

  1. 1. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021;
    2. 长沙理工大学水利工程学院, 长沙 410000;
    3. 长白山自然保护区, 吉林 白山 135200
  • 收稿日期:2014-08-04 发布日期:2015-05-26
  • 作者简介:闫佰忠(1988),男,博士研究生,主要从事水资源与水环境、地下水方面的研究,E-mail:jluybz@126.com。
  • 基金资助:

    国家"十一五"科技支撑计划项目(2006BAB04A09-02,2007BAB28B04-03);吉林省科技攻关项目(20100452)

Experiment on the Characteristic Component (H2SiO3) of the Mineral Water in the Basalt in Jingyu County: A Case Study of Wangdashan Spring

Yan Baizhong1, Xiao Changlai1, Liang Xiujuan1, Ma Zhe1, Wei Runchu1,2, Wu Shili3   

  1. 1. Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Jilin University, Changchun 130021, China;
    2. Shool of Hydraulic Engineering, Changsha University of Science&Technology, Changsha 410000, China;
    3. Changbai Mountain Natural Nature Reserve, Baishan 135200, Jilin, China
  • Received:2014-08-04 Published:2015-05-26

摘要:

以靖宇县典型泉岩样为实验材料,结合野外实际情况,考虑pH值和CO2影响因素设计了矿泉水中H2SiO3实验,对实验结果进行了化学动力学分析,并利用matlab建立数学模型分析了矿物反应的机理。结果表明:1)仅考虑pH值的情况下:初始pH值近中性(pH=7.25)时,实验溶液中H2SiO3释放量较小,反应难以发生;初始pH值为碱性(pH=8.10)时,实验溶液中H2SiO3缓慢增加,平均释放速率为3.08 mg/(kg·d)。2)在考虑pH值和CO2情况下:初始pH值为碱性条件时,通入CO2能够较快促进H2SiO3产生,平均释放速率可由4.29 mg/(kg·d)升高为12.00 mg/(kg·d);初始pH值为弱酸性(pH=6.64)时,实验溶液中H2SiO3增加较快,通入CO2,溶液中H2SiO3释放速率稍微增加。3)实验溶液中H2SiO3释放规律符合Stanford一阶反应动力学模型。靖宇县矿泉水中H2SiO3主要来自偏硅酸矿物(斜长石、镁橄榄石、辉石)的反应。在中性条件下,玄武岩矿物很难反应;在碱性条件时,主要是玄武岩矿物的水解,反应缓慢;在弱酸性条件下,主要是玄武岩矿物与H+和CO2的反应,反应强度较大。

关键词: 矿泉水, H2SiO3, 化学动力学, 矿物反应, 吉林省靖宇县

Abstract:

The experiments under different conditions were designed by taking the typical spring samples in Jingyu in combination with the practical situation of the field, with considering the influencing factors of pH value and CO2. The experimental results were studied by chemical kinetic analysis and mineral reaction mechanism by matlab. The results showed that it is difficult to release H2SiO3 under the initial neutral pH value(pH=7.25); H2SiO3 increases slowly with the initial alkaline pH value (pH=8.10); and the release rate is 3.08 mg/(kg·d). CO2 could promote the release of H2SiO3, and the average releasing rate increased from 4.29 mg/(kg·d) to 12.00 mg/(kg·d) in initial alkaline pH value, although it is not significant in initial faint acid pH value. The release of H2SiO3 could be described by the Stanford first-order kinetic equation. H2SiO3 in mineral water of Jingyu is mainly produced by Metasilicate mineral magnesium (plagioclase, olivine, and pyroxene) reaction. It is hard to generate H2SiO3 in Neutral pH value. Under the condition of alkaline pH, H2SiO3 is produced by the hydrolysis of basalt mineral; and under the condition of faint acid, H2SiO3 is produced by the reaction of basalt mineral and H+, CO2.

Key words: mineral water, H2SiO3, chemical kinetics, mineral reaction, Jingyu County, Jilin Province

中图分类号: 

  • P641

[1] 虞鹏鹏. 水-岩反应及其研究意义[J].中山大学研究生学刊,2012,33(4):25-30. Yu Pengpeng.Water Rock Reaction and Its Significance[J]. Journal of Zhongshan University Graduate, 2012,33(4):25-30.

[2] 林学钰,张文静,何海洋,等. 人工回灌对地下水水质影响的室内模拟实验[J].吉林大学学报:地球科学版,2012,42(5):1404-1409. Lin Xueyu, Zhang Wenjing, He Haiyang, et al. Experiment on Impact of Groundwater Quality During Artificial Recharge Process[J]. Journal of Jilin University: Earth Science Edition,2012,42(5):1404-1409.

[3] Giuseppe D, Saldin G D, Schott J, et al. An Experimental Study of Magnesite Precipitation Rates at Neutral to Alkaline Conditions and 100-200 ℃ as a Function of pH, Aqueous Solution Composition and Chemical Affinity[J]. Geochimica et Cosmochimica Acta,2002,83:93-109.

[4] Christoskova S T, Stoyanova M. Catalytic Oxidation of Cyanides in an Aqueous Phase over Individual and Manganese-Modified Cobalt Oxide Systems[J].Journal of Hazardous Materials,2009,165:690-695.

[5] Oelkers E H, Schott J, Gauthier J M. An Experimental Study of the Dissolution Mechanism and Rates of Muscovite[J]. Geochimica et Cosmochimica Acta,2008,72:4948-4961.

[6] Pachana K, Zuddas P, Censi P. Influence of pH and Temperature on the Early Stage of Mica Alteration[J]. Applied Geochemistry,2012,27:1738-1744.

[7] 周锦铭.天然含硅饮用矿泉水的化学成因与开发前景[J].资源开发与保护,1992,8(2):135-136. Zhou Jinming. The Chemical Genesis and Development of Natural Silicon Mineral Water[J]. Resources Development and Conservation,1992,8(2):135-136.

[8] 张念龙,李剑平,李世忠.山西省饮用天然矿泉水有益元素分析[J].资源开发与市场,1999, 15(3):177-178. Zhang Nianlong, Li Jianping, Li Shizhong.The Analysis of Beneficial Elements of Mineral Water in Shanxi[J]. Resource Development & Market,1999,15(3):177-178.

[9] 陈振东.长白山地区玄武岩地下水基本特征[J].阜新矿业学院学报:自然科学版,1994(4):26-29. Chen Zhendong.Basic Characteristics of Groundwater in Basalt in the Changbai Mountain Area[J]. Journal of Fuxin Mining Institute:Natural Science Edition,1994(4):26-29.

[10] Stanford G, Smith S J.Nitrogen Mineralization Potentials of Soil[J]. Soil Science Society of America Journal,1972,3:465-472.

[11] 张先富,李卉,洪梅,等.苏打盐碱土对氮转化的影响[J].吉林大学学报:地球科学版,2012,42(4):1145-1150. Zhang Xianfu, Li Hui, Hong Mei, et al. Effects of Saline-Alkali Soil on Nitrogen Transformations[J]. Journal of Jilin University:Earth Science Edition,2012,42(4):1145-1150.

[1] 张海燕, 彭彤彤, 温玉娟, 高思萌, 杨悦锁. 五大连池药泉山矿泉微生物多样性及其地质和环境控制特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 815-826.
[2] 王民, 卢双舫, 高松, 李吉君, 王乃军. 应用化学动力学法评价塔中地区志留系沥青生气潜力[J]. J4, 2010, 40(1): 15-20.
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825-829.
[4] 曹剑峰,沈媛媛,平建华,杜全友,刘梅侠. 地下水化学动力学法在大庆前进水源地求参中的应用[J]. J4, 2006, 36(01): 96-0102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!