吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 815-826.doi: 10.13278/j.cnki.jjuese.20180056

• 地质工程与环境工程 • 上一篇    下一篇

五大连池药泉山矿泉微生物多样性及其地质和环境控制特征

张海燕1,2, 彭彤彤3, 温玉娟3, 高思萌3, 杨悦锁1,3   

  1. 1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    2. 黑龙江省水文地质工程地质勘察院, 哈尔滨 150030;
    3. 区域污染环境生态修复教育部重点实验室(沈阳大学), 沈阳 110044
  • 收稿日期:2018-03-12 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 杨悦锁(1962-),男,教授,博士生导师,主要从事污染水文地质方面的研究,E-mail:YangYuesuo@jlu.edu.cn E-mail:YangYuesuo@jlu.edu.cn
  • 作者简介:张海燕(1968-),女,博士研究生,教授级高级工程师,主要从事环境水文地质工作,E-mail:hellozhy@126.com
  • 基金资助:
    国家自然科学基金项目(41472237,41703125);辽宁省创新团队项目(LT2015017);黑龙江国土专项(20160831)

Microbial Diversity of Mineral Spring and Its Geological and Environmental Controls in Yaoquan Mountain, Wuda-Lianchi of NE China

Zhang Haiyan1,2, Peng Tongtong3, Wen Yujuan3, Gao Simeng3, Yang Yuesuo1,3   

  1. 1. Key Lab of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    2. Hydrogeology and Engineering Geology Prospecting Institute of Heilongjiang Province, Harbin 150030, China;
    3. Key Lab of Eco-Restoration of Regional Polluted Environment of Ministry of Education(Shenyang University Shenyang), 110044, China
  • Received:2018-03-12 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41472237,41703125), Liaoning Innovation Team Project (LT2015017) and Heilongjiang L&R Project(20160831)

摘要: 药泉山矿泉是五大连池世界地质公园旅游疗养业赖以生存和发展的重要资源,然而其矿泉水的微生物研究一直是空白。本文在对五大连池药泉山矿泉环境水文地质前期成果的基础上,选择典型季节对该区域的矿泉水进行现场采样和分析,并进一步利用分子生物学PCR-DGGE技术对水样的微生物群落多样性进行了初步的研究与分析。结果表明:研究区的微生物多样性显著,而且不同季节微生物多样性统计参数存在巨大差异;在不同的空间位置夏季微生物多样性变化较大,但是同一位置的总体变化规律基本一致,这说明矿泉水中的微生物对地质特征、环境条件的响应具有良好的一致性;而冬季的微生物多样性统计参数在不同空间位置的变化规律也呈现明显差异,但是其他参数变化不大,对地质空间、环境条件响应微弱。该研究对揭示五大连池矿泉水微观成因具有一定的价值。

关键词: 矿泉水, 微生物, 多样性参数, 五大连池, 药泉山

Abstract: The mineral springs in the Yaoquan Mountain have been the important resource for the tourism and therapy in the Wuda-Lianchi geological resort, and attracted much more research in recent years, but no one is for the microbial diversity of the mineral spring. Based on the previous environmental hydrogeology of this area, the sampling and analysis of the springs in the typical seasons were undertaken,and further the molecular biology work for the microbial diversity was conducted by the PCR-DGGE technique. The results showed that there was a distinct micro-diversity in the study area,and the micro-statistical parameters were greatly different in different seasons. The micro-diversity changed a lot at various spatial locations in summer, but generally consistent at the same location, showing that microorganisms of the springs responded well to the geological settings and environmental conditions. There were clear differences for the statistical parameter of microbes at different spatial locations in winter, but the other parameters changed little. This study is scientifically valuable for the insight of the springs formation at a micro-level in Wuda-Lianchi.

Key words: mineral springs, microbiology, biodiversity parameters, Wuda-Lianchi, Yaoquan Mountain

中图分类号: 

  • P641.69
[1] 王元玉. 五大连池自然保护区生态旅游资源管理研究[D].沈阳:东北林业大学,2010. Wang Yuanyu. Research on Eco-Tourism Resource Management of Wudalianchi Nature Reserve[D]. Shenyang:Northeast Forestry University, 2010.
[2] 赵继昌. 黑龙江五大连池药泉山矿泉形成特征[J]. 水文地质工程地质,1985(3):55-59. Zhao Jichang. Characteristics of the Formation of Yaoquanshan Mineral Spring in Wudalianchi, Heilongjiang Province[J]. Hydrogeology and Engineering Geology,1985(3):55-59.
[3] 张耀德,王允鹏, 李景喆,等. 五大连池药泉山矿水成因研究[J]. 水文地质工程地质,1988(4):24-27. Zhang Yaode, Wang Yunpeng, Li Jingzhe,et al. Study on the Cause of Yaoquanshan Mineral Water in Wudalianchi[J]. Hydrogeology and Engineering Geology, 1988(4):24-27.
[4] 韩建超,张海燕,杨悦锁,等. 五大连池药泉山地下水循环特征的水化学证据[J]. 节水灌溉,2012(8):23-26,30. Han Jianchao, Zhang Haiyan, Yang Yuesuo, et al. Hydrochemical Evidence of Circulation Characteristics of Yaoqunshan Groundwater in Wudalianchi[J].Water-Saving and Irrigation,2012(8):23-26,30.
[5] Perreault N N, Andersen D T, Pollard W H, et al. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic[J]. Applied & Environmental Microbiology, 2007, 73(5):1532-1543.
[6] Camacho A, Rochera C, Silvestre J J, et al. Spatial Dominance and Inorganic Carbon Assimilation by Conspicuous Autotrophic Biofilms in a Physical and Chemical Gradient of a Cold Sulfurous Spring:The Role of Differential Ecological Strategies[J]. Microbial Ecology, 2005, 50(2):172
[7] Rudolph C, Wanner G, Huber R. Natural Commu-nities of Novel Archaea and Bacteria Growing in Cold Sulfurous Springs with a String-of-Pearls-Like Morphology[J]. Applied & Environmental Microbiology, 2001, 67(5):2336.
[8] Rudolph C, Moissl C, Henneberger R, et al. Ecology and Microbial Structures of Archaeal/Bacterial Strings-of-Pearls Communities and Archaeal Relatives Thriving in Cold Sulfidic Springs[J]. Fems Microbiology Ecology, 2004, 50(1):1-11.
[9] Koch M, Rudolph C, Moissl C, et al. A Cold-Loving Crenarchaeon is a Substantial Part of a Novel Microbial Community in Cold Sulphidic Marsh Water[J]. Fems Microbiology Ecology, 2006, 57(1):55.
[10] Moissl C, Rudolph C, Huber R. Natural Commu-nities of Novel Archaea and Bacteria with a String-of-Pearls-Like Morphology:Molecular Analysis of the Bacterial Partners[J]. Applied & Environmental Microbiology, 2002, 68(2):933.
[11] Farnleitner A H, Wilhartitz I, Ryzinska G, et al. Bacterial Dynamics in Spring Water of Alpine Karst Aquifers Indicates the Presence of Stable Autochthonous Microbial Endokarst Communities[J]. Environmental Microbiology, 2005, 7(8):1248-1259.
[12] Brock T D, Freeze H. Thermus Aquaticus gen. n. and sp. n., A Nonsporulating Extreme Thermophile[J]. Journal of Bacteriology, 1969, 98(1):289-297.
[13] Melendrez M C, Lange R K, Cohan F M, et al. Influence of Molecular Resolution on Sequence-Based Discovery of Ecological Diversity among Synechococcus Populations in an Alkaline Siliceous Hot Spring Microbial Mat[J]. Applied & Environmental Microbiology, 2011, 77(4):1359.
[14] Vick T J, Dodsworth J A, Costa K C, et al. Microbiology and Geochemistry of Little Hot Creek, a Hot Spring Environment in the Long Valley Caldera[J]. Geobiology, 2010, 8(2):140-154.
[15] Liu L J, You X Y, Zheng H, et al. Complete Genome Sequence of Metallosphaera Cuprina, a Metal Sulfide-Oxidizing Archaeon from a Hot Spring[J]. Journal of Bacteriology, 2011, 193(13):3387-3388.
[16] van der Meer M T J, Klatt C G, Wood J, et al. Cultivation and Genomic, Nutritional, and Lipid Biomarker Characterization of Roseiflexus Strains Closely Related to Predominantin Situ Populations Inhabiting Yellowstone Hot Spring Microbial Mats[J]. Journal of Bacteriology, 2010, 192(12):3033.
[17] Chan C S, Chan K G, Tay Y L, et al. Diversity of Thermophiles in a Malaysian Hot Spring Determined Using 16S rRNA and Shotgun Metagenome Sequencing[J]. Frontiers in Microbiology, 2015, 6:177.
[18] Hugenholtz P, Pitulle C, Hershberger K L, et al. Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring[J]. Journal of Bacteriology, 1998, 180(2):366.
[19] 王红蕾. 长白山热泉生境微生物群落结构及嗜热菌分离鉴定[D]. 长春:吉林大学, 2014. Wang Honglei. Isolation and Identification of Microbiome Community in Hot Spring Habitat in Changbai Mountain[D]. Changchun:Jilin University,2014.
[20] 明红. 云南腾冲热泉嗜热原核微生物资源挖掘和高温木聚糖酶筛选[D]. 昆明:云南大学, 2015. Minghong. Mining of Thermonuclear Microbial Resources and Screening of High Temperature Xylitase in Tengchong Hot Spring in Yunnan[D]. Kunming:Yunnan University, 2015.
[21] 曾军. 新疆沙湾冷泉沉积物原核微生物多样性[D].乌鲁木齐:新疆大学, 2010. Zeng Jun. Prokaryotic Microbial Diversity of Cold Spring Sediment in Shawan, Xinjiang[D]. Urumqi:Xinjiang University, 2015.
[22] 薛娟. 乌鲁木齐10号泉水体微生物对地震的响应[D]. 石河子:石河子大学, 2013. Xue Juan. Response to Earthquake by Microorganism of Spring Spring 10 in Urumqi[D]. Shihezi:Shihezi University, 2013.
[23] 高小其, 娄恺. 新疆地区地震前后泉水中微生物异常反映的研究[J]. 国际地震动态, 2012(6):269-272. Gao Xiaoqi, Lou Kai. Study on Abnormal Microbial Reflection in Spring Water Before and after Earthquake in Xinjiang[J]. International Earthquake Dynamics, 2012(6):269-272.
[24] 吴江超, 张涛, 孙建,等. 新疆地震断裂带泉水微生物群落功能多样性[J]. 新疆农业科学, 2010, 47(5):1052-1056. Wu Jiangchao, Zhang Tao, Sun Jian,et al. Diversity of Microbial Community Function of Spring Water in Xinjiang Earthquake Fault Zone[J]. Xinjiang Agricultural Science, 2010, 47(5):1052-1056.
[25] 孟昭荣. 经济新常态下旅游小城镇经营研究[D].哈尔滨:哈尔滨师范大学,2016. Meng Zhaorong. A Study on the Management of Small Towns Under the New Economic Normal[D]. Harbin:Harbin Normal University, 2016.
[26] 韩松山,丘顺帆. 1/5万五大连池农场幅、饮龙河农场幅、德都县幅、二龙山农场一分场四幅联测区域地质调查报告[R]. 哈尔滨:黑龙江省地质调查总院,2003:20-61. Han Songshan, Qiu Shunfan. A Regional Geological Survey Report on a Joint Survey of Wudalianchi Farm, Yilong River Farm, Dedo County and Erlong Mountain Farm[R]. Harbin:General Institute of Geological Survey of Heilongjiang Province,2003:20-61.
[27] 孙如波,杜建国. 五大连池火山区水文地球化学背景[J]. 矿物岩石地球化学通报,1998,66(3):12-17. Sun Rubo, Du Jianguo. Hydrogeochemical Background of Wudalianchi Volcanic Area[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1998, 66(3):12-17
[28] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015, 45(2):573-583. Su Xiaosi, Meng Xiangfei, Zhang Wenjing, et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2):573-583.
[29] Casamayor E D, Schäfer H, Bañeras L, et al. Identifi-cation of and Spatio-Temporal Differences Between Microbial Assemblages fromTwo Neighboring Sulfurous Lakes:Comparison by Micros-Copy and Denaturing Gradient Gel Electrophoresis[J]. Applied and Environment Microbiology, 2000, 66:499-508.
[30] Emilie L, Bénédite L, Loïc T H, et al. Analysis of Bacterial Diversity in River Biofilms Using 16S rDNA PCR-DGGE:Methodological Settings and Fingerprints Interpretation[J]. Water Research, 2005, 39:380-388.
[31] Josh D N, William W M. Fluorophore-Labeled Pri-mers Improve the Sensitivity, Versatility, and Normalization of Denaturing Gradient Gel Electrophoresis[J]. Applied and Environmental Microbiology, 2005, 71(8):4893-4896.
[32] Lee G L Y, Ahmad S A, Yasid N A, et al. Biode-gradation of Phenol by Cold-Adapted Bacteria from Antarctic Soils[J]. Polar Biology, 2018, 41(3):553-562.
[1] 娄军芳, 汤洁, 宋扬. 单室无膜微生物电解池中阴极生物膜的电活性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1247-1254.
[2] 周刚, 郑荣才, 赵罡, 文华国, 温龙斌. 川西北甘溪地区吉维特阶核形石特征、成因及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 405-417.
[3] 李玉梅, 罗明奇, 潘国勇, 陶千冶. 离心操作对BIOLOG法测定微生物群落功能多样性的影响[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1198-1204.
[4] 闫佰忠, 肖长来, 梁秀娟, 马喆, 危润初, 吴世利. 靖宇县玄武岩区矿泉水特征组分H2SiO3成因实验——以王大山泉为例[J]. 吉林大学学报(地球科学版), 2015, 45(3): 892-898.
[5] 苏小四, 孟祥菲, 张文静, 石旭飞, 何海洋. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015, 45(2): 573-583.
[6] 宋志伟, 王秋旭, 宁婷婷, 任南琪, 李立欣. 微生物絮凝剂投加方式对好氧颗粒污泥性能的影响[J]. 吉林大学学报(地球科学版), 2015, 45(1): 247-254.
[7] 张凤君,赵静,王天野,陶怡,刘卓婧,许天福. 土著微生物对CO2地质储存过程中水岩作用的影响[J]. 吉林大学学报(地球科学版), 2013, 43(2): 544-551.
[8] 杨悦锁, 雷玉德, 杜新强, 韩建超, 曹玉清. 当地下水邂逅DNA:石油类有机污染及其生物降解[J]. J4, 2012, 42(5): 1434-1445.
[9] 马会强, 张兰英, 李爽, 刘鹏, 邓海静. 柴油污染地下水修复生物反应墙中功能微生物数量及群落多样性[J]. J4, 2011, 41(3): 819-825.
[10] 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839.
[11] 董军, 许超, 孙艳, 孙玥, 孙惠森. 垃圾渗滤液污染场地NO-3、PO3-4和SO2-4对微生物活性的影响[J]. J4, 2009, 39(6): 1122-1126.
[12] 刘虹,张兰英,刘娜,刘鹏. 低温下固定化微生物降解水体中阿特拉津的效果[J]. J4, 2008, 38(6): 1027-1031.
[13] 张玉玲,姚军,赵晓波,曹春英,郑松志. 复合型微生物絮凝剂产生菌YL3的优化条件[J]. J4, 2008, 38(5): 864-0868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!