吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1447-1459.doi: 10.13278/j.cnki.jjuese.201505116
王亚东1,2,3, 郑建京1,2, 孙国强1,2, 郑有伟1,2, 刘兴旺1,2
Wang Yadong1,2,3, Zheng Jianjing1,2, Sun Guoqiang1,2, Zheng Youwei1,2, Liu Xingwang1,2
摘要:
阿尔金山新生代隆升历史一直倍受关注,大量热年代学数据显示,渐新世(40~30 Ma)以来发生阶段性隆升,而新生代初期隆升的热年代学记录极少。柴达木盆地西北地区(柴西北地区)新生界碎屑锆石裂变径迹年龄研究表明,其物源区单一且在新生代早期古新世中晚始新世(65~50 Ma)发生快速隆升剥露,为该区提供陆源碎屑。前人通过物源分析发现,柴西北时期的碎屑物主要来源于阿尔金山。同时,该区路乐河组下干柴沟组沉积地层残余厚度及沉积相特征表明,此时(65~50 Ma)阿尔金山存在一次短暂抬升,但幅度较小,与盆地高差不大,使柴西地区地形东高西低、北高南低。结合前人研究成果,本研究锆石裂变径迹热年代学数据以及沉积学指标所记录的阿尔金山东段65~50 Ma构造隆升事件,是对新生代印度欧亚板块碰撞的最初响应,也为青藏高原新生代隆升具有南北同步性提供了新的证据。
中图分类号:
[1] Meyer B, Tapponnier P, Bourjot L, et al. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau[J]. Geophysics Journal International, 1998, 135: 1-47.[2] Sobel E R. Basin Analysis of the Jurassic-Lower Cretaceous Southwest Tarim Basin, Northwest China[J]. Global Science American Bulletin, 1999, 111: 709-724.[3] Yue Yongjun, Liou J G. Two-Stage Evolution Model for the Altyn Tagh Fault, China[J]. Geology, 1999, 27: 227-230.[4] Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.[5] Yin An, Rumelhart P E, Butler R, et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation[J]. Global Science American Bulletin, 2002, 114: 1257-1295.[6] Cowgill E, Yin An, Harrison T M, et al. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of Back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau[J]. Journal Geophysical Research, 2003, 108: 1-28.[7] Yue Yongjun, Ritts B D, Graham S A. Initiation and Long-Term Slip History of the Altyn Tagh Fault[J]. International Geology Review, 2001, 43: 1087-1093.[8] Chen Yan, Gilder S, Halim N, et al. New Paleomagnetic Constraints on Central Asian Kinematics: Displacement Along the Altyn Tagh Fault and Rotation of the Qaidam Basin[J]. Tectonics, 2002, 21(5): 1042, doi:10.1029/2001TC901030.[9] Wang Xiaoming, Wang Banyue, Qiu Zhanxiang, et al. Danghe Area (Western Gansu, China) Biostratigraphy and Implications for Depositional History and Tec-tonics of Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 208: 253-269.[10] Yue Yongjun, Ritts B D, Graham S A, et al. Slowing Extrusion Tectonics: Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2004, 217: 111-122.[11] Yue Yongjun, Ritts B D, Hanson A D, et al. Sedimentary Evidence Against Large Strike-slip Translation on the Northern Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 2004, 228: 311-323.[12] Ritts B D, Yue Yongjun, Graham S A. Oligocene-Miocene Tectonics and Sedimentation Along the Altyn Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 2004, 112: 207-229.[13] Ritts B D, Yue Yongjun, Graham S A, et al. From Sea Level to High Elevation in 15 Million Years: Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan[J]. American Journal of Science, 2008, 308: 657-678.[14] Sun Jimin, Zhu Rixiang, An Zhisheng. Tectonic Uplift in the Northern Tibetan Plateau Since 13.7 Ma Ago Inferred from Molasse Deposits Along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235: 641-653.[15] Sun Zhiming,Yang Zhenyu, Pei Junling, et al. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 237: 635-646.[16] 李海兵, 杨经绥, 许志琴, 等. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘, 2006, 13(4): 59-79. Li Haibing, Yang Jingsui, Xu Zhiqin, et al. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4): 59-79.[17] Wang Erqi, Xu Fengyin, Zhou Jianxun, et al. Eastward Migration of the Qaidam Basin and Its Implications for Cenozoic Evolution of the Altyn Tagh Fault and Associated River Systems[J]. The Geological Society American Bulletin, 2006, 118: 349-365.[18] Liu Yongjiang, Franz N B, Johann G, et al. Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China[J]. Journal of Asian Earth Sciences, 2007, 29: 243-252.[19] Zhuang Guangsheng, Hourigan J K, Ritts B D, et al. Cenozoic Multiple-Phase Tectonic Evolution of the Northern Tibetan Plateau: Constraints from Sedimentary Records from Qaidam Basin,Hexi Corridor,and Subei Basin,Northwest China[J].American Journal of Science, 2011, 311: 116-152.[20] Lu Haijian, Wang Erchie, Meng Kai. Paleomagnetism and Anisotropy of Magnetic Susceptibility of the Tertiary Janggalsay Section (Southeast Tarim Basin): Implications for Miocene Tectonic Evolution of the Altyn Tagh Range[J]. Tectonophysics, 2014, doi: 10.1016/j.tecto.2014.01.031.[21] 柏道远, 孟德保, 刘耀荣, 等. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J]. 中国地质, 2003, 30(3): 240-246. Bai Daoyuan, Meng Debao, Liu Yaorong, et al. Apatite Fission-Track Records of the Tectonic Uplift of the Central Segment of the Kunlun Mountains on the Northern Margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246.[22] 拜永山, 任二峰, 范桂兰, 等. 青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据[J]. 地质通报, 2008, 27(7): 1044-1048. Bai Yongshan, Ren Erfeng, Fan Guilan, et al. Apatite Fission Track Evidence for the Miocene Rapid Uplift of the Qimantag Mountains on the Northwes-tern Margin of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2008, 27(7): 1044-1048.[23] 陈正乐, 宫红良, 李丽, 等. 阿尔金山脉新生代隆升-剥露过程[J]. 地学前缘, 2006, 13(4): 91-102. Chen Zhengle, Gong Hongliang, Li Li, et al. Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains[J]. Earth Science Frontiers, 2006, 13(4): 91-102.[24] 陈正乐, 万景林, 王小凤, 等. 阿尔金断裂带8 Ma左右的快速走滑及其地质意义[J]. 地球学报, 2002, 23(4): 295-300. Chen Zhengle, Wan Jinglin, Wang Xiaofeng, et al. Rapid Strike Slip of the Altyn Tagh Fault at 8 Ma and Its Geological Implications[J]. Acta Geoscientia Sinica, 2001, 23(4): 295-300.[25] 陈正乐, 张岳桥, 王小凤, 等. 新生代阿尔金山脉隆升历史的裂变径迹证据[J]. 地球学报, 2001, 22(5): 413-418. Chen Zhengle, Zhang Yueqiao, Wang Xiaofeng, et al. Fission Track Dating of Apatite Constrains on the Cenozoic Uplift of the Altyn Tagh Mountain[J]. Acta Geoscientia Sinica, 2001, 22(5): 413-418.[26] 万景林, 王瑜, 李齐, 等. 阿尔金山北段晚新生代山体抬升的裂变径迹证据[J]. 矿物岩石地球化学通报, 2001, 20(4): 222-224. Wan Jinglin, Wang Yu, Li Qi, et al. FT Evidence of Northern Altyn Uplift in Late-Cenozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 222-224.[27] 王瑜, 万景林, 李齐, 等. 阿尔金山北段阿克塞当金山口一带新生代山体抬升和剥蚀的裂变径迹证据[J]. 地质学报, 2002, 76(2): 191-198. Wang Yu, Wan Jinglin, Li Qi, et al. Fission-Track Evidence for the Cenozoic Uplift and Erosion of the Northern Segment of the Altyn Tagh Fault Zone at the Aksay-Dangjin Pass[J]. Acta Geologica Sinica, 2002, 76(2): 191-198.[28] 袁四化, 刘永江, 葛肖虹, 等. 阿尔金山中新生代隆升历史研究进展[J]. 世界地质, 2006, 25(2): 164-171. Yuan Sihua, Liu Yongjiang, Ge Xiaohong, et al. Adwance in Study of Mesozoic-Cenozoic Uplift History of the Altyn Mountains[J]. Global Geology, 2006, 25(2): 164-171.[29] Wang Guocan, Cao Kai, Zhang Kexin, et al. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Science, 2011, 54: 29-44.[30] 肖安成, 吴磊, 李洪革, 等. 阿尔金断裂新生代活动方式及其与柴达木盆地的耦合分析[J]. 岩石学报, 2013, 29(8): 2826-2836. Xiao Ancheng, Wu Lei, Li Hongge, et al. Tectonic Processes of the Cenozoic Altyn Tagh Fault and Its Coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 2013, 29(8): 2826-2836.[31] Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints[J]. Tectonophysics, 2001, 343:111-134.[32] 刘永江, Franz N, 葛肖虹, 等. 阿尔金断裂带年代学和阿尔金山隆升[J]. 地质科学, 2007, 42(1): 134-146. Liu Yongjiang, Franz N, Ge Xiaohong, et al. Geochronology of the Altun Fault Zone and Rising of the Altun Mountains[J]. Chinese Journal of Geology, 2007, 42(1): 134-146.[33] Yin An, Dang Yuqi, Zhang Min, et al. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions: Part 3: Structural Geology, Sedimentation, and Regional Tectonic Reconstruction[J]. The Geological Society of America, 2008, 120(7/8): 847-876.[34] 任收麦, 葛肖虹, 刘永江, 等. 晚白垩世以来沿阿尔金断裂带的阶段性走滑隆升[J]. 地质通报, 2004, 23(9/10): 926-932. Ren Shoumai, Ge Xiaohong, Liu Yongjiang, et al. Multi-Stage Strik-Slip Motion and Uplift Along the Altyn Tagh Fault Since the Late Cretaceous[J]. Geological Bulletin of China, 2004, 23(9/10): 926-932.[35] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响:来自构造节理分析的证据[J]. 吉林大学学报: 地球科学版, 2011, 41(3): 724-734. Yin Chengming, Ren Shoumai, Tian Liyan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin: Evidences from Analysis of Joints Data[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 724-734.[36] 刘重庆, 周建勋. 阿尔金断裂走滑运动对柴达木盆地的侧向效应[J]. 西安科技大学学报, 2013, 33(3): 291-297. Liu Chongqing, Zhou Jianxun. Lateral Effect of Altyn Fault Strike-Slip Movement on Qaidam Basin[J]. Journal of Xi’an University of Science and Technology, 2013, 33(3): 291-297.[37] Fang Xiaomin, Zhang Weilin, Meng Qingquan, et al. High-Resolution Magneto Stratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258: 293-306.[38] Lu Haijian, Xiong Shangfa. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288: 539-550.[39] Wang Yadong, Zheng Jianjing, Zhang Weilin, et al. Cenozoic Uplift of the Tibetan Plateau: Evidence from the Tectonic-Sedimentary Evolution of the Western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3(2): 175-187.[40] Bernet M, Garver J I. Fission-Track Analysis of Detrital Zircon[J]. Reviews in Mineralogy & Geoche-mistry, 2005, 58: 205-238.[41] 陈国俊, 杜贵超, 吕成福, 等. 柴达木盆地西北地区古近纪沉积充填过程与主控因素分析[J]. 沉积学报, 2011, 29(5): 866-874. Chen Guojun, Du Guichao, Lü Chengfu, et al. Sedimentary Filling History and Analysis of Its Controlling Factors in the Paleogene of the Northwestern Qaidam Basin, China[J]. Acta Sedimentologica Sinica, 2011, 29(5): 866-874.[42] Green P F. A New Look at Statistics in Fission-Track Dating[J]. Nuclear Tracks, 1981, 5(1/2): 77-86.[43] Brandon M T, Roden-Tice M K, Garver J I. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Wa-shington State[J]. The Geological Society of American Bulletin, 1998, 110: 985-1009.[44] Bernet M, Brandon M T, Garver J I, et al. Determining the Zircon Fission-Track Closure Temperature[C]//98th Annual Meeting Abstract with Programs 34. [S.l.]:The Geological Society of American Cordilleran Section, 2002: 18.[45] Qiu Nansheng, Kang Yongshang, Jin Zhijun. Temperature and Pressure Field in the Tertiary Succession of the Western Qaidam Basin, Northeast Qinghai-Tibet Plateau, China[J]. Marine and Petroleum Geology, 2003, 20: 493-507.[46] Qiu Nansheng. Tectono-Thermal Evolution of the Qaidam Basin, China: Evidence from Ro and Apatite Fission Track Data[J]. Petroleum Geoscience, 2002, 8: 279-285.[47] Brandon M T. Decomposition of Mixed Grain Age Distributions Using Binom Fit[J]. On Track, 2002, 24: 13-18.[48] Garver J I, Soloviev A V, Bullen M E, et al. Towards a More Complete Record of Magmatism and Exhumation in Continental Arcs Using Detrital Fission-Track Thermochronometry[J]. Physics and Chemistry of Earth, 2000, 25: 565-570.[49] Brandon T Mark, Vance A Joseph. Tectonic Evolution of the Cenozoic Olympic Subduction Complex, Washington State, as Deduced from Fission Track Ages for Detrital Zircons[J]. American Journal Science, 1992, 292: 565-636.[50] Huber T B, Norris D R, MacLeod G K. Deep Sea Paleotemperature Record of Extreme Warmth During the Cretaceous[J]. Geology, 2002, 30: 123-126.[51] Robert A Spicer, Judith T Parrish. Late Cretaceous-Early Tertiary Palaeoclimates of Northern High Latitudes: A Quantitative View[J]. Journal of the Geological Society London, 1990, 147: 329-341.[52] Wang Chengshan, Hu Xiumian, Jansa L, et al. The Cenomanian-Turonian Anoxic Event in Southern Tibet[J]. Cretaceous Research, 2001, 22: 675-676.[53] Hu Xiumian, Jansa L, Wang Chengshan, et al. Upper Cretaceous Oceanic Red Beds (CORB) in the Tethys: Occurrence, Lithofacies, Age and Environment[J].Cretaceous Research, 2005, 26: 3-20.[54] 戴霜, 张明震, 彭栋祥, 等. 中国西北地区中新生代构造与气候格局演化[J]. 海洋地质与第四纪地质, 2013, 33(4): 153-168. Dai Shuang, Zhang Mingzhen, Peng Dongxiang, et al. The Mesozoic-Cenozoic Evolution of the Tectonic and Climatic Patterns, NW China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 153-168.[55] 付玲, 关平, 赵为永, 等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报, 2013, 29(8): 2867-2875. Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875.[56] 中国石油青海油田勘探开发研究院. 柴达木盆地西部构造-地层动态演化与有效圈闭的识别和筛分, 青海油田内部报告[R]. 敦煌:中国石油青海油田勘探开发研究院, 2004. Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum. The Dynamic Evolution of Structural-Stratigraphic and Identifying and Screening of the Effective Traps in the Western Qaidam Basin, Internal Report of Qinghai Oilfield[R]. Dunhuang: Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum, 2004.[57] 孙国强, 郑建京, 苏龙, 等. 柴达木盆地西北区中新生代构造演化过程研究[J]. 天然气地球科学, 2010, 21(2): 212-217. Sun Guoqiang,Zheng Jianjing,Su Long,et al.Mesozoic-Cenozoic Tectonic Evolution in Northwestern Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(2): 212-217.[58] 孙国强, 苏龙, 王旭红, 等. 柴达木盆地西部地区构造演化的裂变径迹揭示[J]. 天然气工业, 2009, 29(2): 27-31. Sun Guoqiang, Su Long, Wang Xuhong, et al. Fission Track Evidences of Tectonic Evolution in West Qaidam Basin[J]. Natural Gas Industry, 2009, 29(2): 27-31.[59] 苏妮娜, 金振奎, 宋璠, 等. 柴达木盆地古近系沉积相研究[J]. 中国石油大学学报: 自然科学版, 2014, 38(3): 1-9. Su Nina, Jin Zhenkui, Song Fan, et al. Sedimentary Facies of the Paleogene in Qaidam Basin[J]. Journal of China University of Petroleum, 2014, 38(3): 1-9.[60] 万景林, 郑德文, 郑文俊, 等. MDD法和裂变径迹法相结合模拟样品的低温热历史:以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. Wan Jinglin, Zheng Dewen, Zheng Wenjun, et al. Modeling Thermal History During Low Temperature by K-Feldspar MDD and Fission Track: Example from Meso-Cenozoic Tectonic Evolution in Saishitengshan in the Northern Margin of Qaidam Basin[J]. Seismology and Geology, 2011, 33(2): 369-382.[61] 孙岳, 陈正乐, 陈柏林, 等. 阿尔金北缘EW向山脉新生代隆升剥露的裂变径迹证据[J]. 地球学报, 2014, 35(1): 67-75. Sun Yue, Chen Zhengle, Chen Bailin, et al. Cenozoic Uplift and Denudation of the EW-Trending Range of Northern Altun Mountains: Evidence from Apatite Fission Track Data[J]. Acta Geoscientica Sinica, 2014, 35(1): 67-75.[62] 王国灿, 向树元, 王岸, 等. 东昆仑及相邻地区中生代新生代早期构造过程的热年代学记录[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 605-614. Wang Guocan, Xiang Shuyuan, Wang An, et al. Thermochronological Constraint to the Processes of the East Kunlun and Adjacent Areas in Mesozoic-Early Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 605-614.[63] Yuan Wanming, Dong Jinquan, Wang Shicheng, et al. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27: 847-856.[64] Wang Fei, Lo Chinghua, Li Qi, et al. Onset Timing of Significant Unroofing Around Qaidam Basin, Northern Tibet, China: Constraints from 40Ar/39Ar and FT Thermochronology on Granitoids[J]. Journal of Asian Earth Sciences, 2004, 24: 59-69.[65] Lu Haijian,Wang Erchie,Shi Xuhua,et al.Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses[J]. Tectonophysics, 2012, 580: 150-161.[66] 陈宣华, Michael W M, 李丽, 等. 东昆仑造山带多期隆升历史的地质热年代学证据[J]. 地质通报, 2011, 30(11): 1647-1660. Chen Xuanhua, Michael W M, Li Li, et al. Thermochronological Evidence for Multi-Phase Uplifting of the East Kunlun Mountains, Northern Tibetan Plateau[J]. Geological Bulletin of China, 2011, 30(11): 1647-1660.[67] 王岸, 王国灿, 张克信, 等. 东昆仑造山带新生代早期构造事件的碎屑裂变径迹年代学证据[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 737-746. Wang An, Wang Guocan, Zhang Kexin, et al. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(5): 737-746.[68] 姜少飞. 北祁连山磷灰石裂变径迹热年代学初步研究[D]. 兰州: 兰州大学, 2011. Jiang Shaofei. Study on Apatite Fission-Track Thermochronology in Northern Qilian Mountain[D]. Lanzhou: Lanzhou University, 2011. |
[1] | 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104. |
[2] | 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070. |
[3] | 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783. |
[4] | 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586. |
[5] | 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144. |
[6] | 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131. |
[7] | 景先庆, 杨振宇, 仝亚博, 王恒, 徐颖超. 三峡地区新元古代莲沱组底部凝灰岩锆石SHRIMP U-Pb年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 165-180. |
[8] | 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745. |
[9] | 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441. |
[10] | 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206. |
[11] | 刘锦, 刘正宏, 赵辰, 彭游博, 王楚杰, 杨仲杰, 豆世勇. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 497-510. |
[12] | 齐忠友, 冯志强, 温泉波, 张铁安, 刘宾强, 李小玉, 杜兵盈. 东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(1): 113-125. |
[13] | 崔建军, 王艳红, 郑光高, 施炜, 马立成. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 139-153. |
[14] | 汪岩, 杨晓平, 那福超, 付俊彧, 孙巍, 杨帆, 刘英才, 张广宇, 宋维民, 杨雅军, 钱程, 庞雪娇. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 126-138. |
[15] | 张朋, 杨宏智, 李斌, 寇林林, 杨凤超. 辽东青城子矿集区姚家沟钼矿床成矿物质来源、成矿年代及成矿动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1684-1696. |
|