吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 876-883.doi: 10.13278/j.cnki.jjuese.201603301

• 地球探测与信息技术 • 上一篇    下一篇

最小噪声分离在航空电磁数据噪声压制中的应用

朱凯光, 李玥, 孟洋, 王凌群, 谢宾, 程宇奇   

  1. 吉林大学仪器科学与电气工程学院/地球信息探测仪器教育部重点实验室, 长春 130026
  • 收稿日期:2015-10-15 出版日期:2016-05-26 发布日期:2016-05-26
  • 作者简介:朱凯光(1970),女,教授,博士生导师,主要从事电磁探测技术与信号处理研究,E-mail:zhukaiguang@jlu.edu.cn
  • 基金资助:

    国家高技术研究发展计划(国家“863”计划)项目(2013AA063904);国家自然科学基金项目(41274076);国家重大科研装备研制项目-03子项目(ZDYZ2012-1)

Application of Minimum Noise Fraction on Noise Removal for Airborne Electromagnetic Data

Zhu Kaiguang, Li Yue, Meng Yang, Wang Lingqun, Xie Bin, Cheng Yuqi   

  1. College of Instrumentation and Electrical Engineering, Jilin University/Key Laboratory of Geo-Exploration Instrumentation, Ministry of Education, Changchun 130026, China
  • Received:2015-10-15 Online:2016-05-26 Published:2016-05-26
  • Supported by:

    Supported by the National High-Tech R & D Program of China (2013AA063904), the National Natural Science Foundation of China (41274076) and R & D of Key Instruments and the National R & D Projects for Key Scientific Instrumentsof China(ZDYZ2012-1-03)

摘要:

时间域航空电磁数据经预处理后,仍存在残余噪声,影响电磁探测对地下异常的识别能力。笔者提出一种基于最小噪声分离的去噪方法,将一组含噪电磁数据通过旋转矩阵线性变换为按照信噪比大小排列的最小噪声分离成分,利用信噪比较大的最小噪声分离成分重构电磁数据,以达到分离噪声的目的。仿真数据去噪结果表明:最小噪声分离不仅能够有效压制晚期道剖面噪声,还能准确分辨异常信息;晚期道信噪比较测线滤波提高了11.28 dB,实测数据的噪声水平也由±50 nT/s降低到±10 nT/s。

关键词: 时间域航空电磁数据, 最小噪声分离, 去噪, 测线滤波

Abstract:

There is still residual noise in time-domain airborne electromagnetic data after preprocessing, which will affect the recognition of target. We proposed an approach to remove the residual noise based on minimum noise fraction. A set of noise-contaminated data will be linearly transformed by using the rotation matrix to the minimum noise fraction components, which are arranged in signal to noise ratio (SNR) from big to small. We use the minimum noise fraction components with the bigger SNR to reconstruct the electromagnetic data for separating the signal and noise.The experiment with the simulation data test shows that the minimum noise fraction can not only effectively suppress the noise of the profile of later channels, but also accurately identify the information of the target. The SNR has improved by 11.28 dB compared with the survey-line filtering. The noise level for the field data is reduced from ±50 nT/s to ±10 nT/s after noise removal.

Key words: time-domain airborne electromagnetic data, minimum noise fraction, noise removal, survey-linefiltering

中图分类号: 

  • P631.2

[1] Lane R, Plunkett C, Price A, et al. Streamed Data:A Source of Insight and Improvement for Time Domain Airborne EM[J]. Exploration Geophysics, 1998,29(2):16-23.

[2] Lane R, Green A, Golding C, et al. An Example of 3D Conductivity Mapping Using the TEMPEST Airborne Electromagnetic System[J].Exploration Geophysics,2000, 31(2):162-172.

[3] Macnae J C, Ltagne Y, West G F. Noise Processing Techniques for Time-Domain EM System[J]. Geophysics, 1984, 49(7):934-948.

[4] Ridsdill-Smith T A, Dentith M C. The Wavelet Transform in Aeromagnetic Processing[J]. Geophysics,1999, 64(4):1003-1013.

[5] Buselliuselli G, Hwang H S. AEM Noise Reduction with Remote Referencing[J]. Exploration Geophysics, 1998, 29(2):71-76.

[6] Bouchedda A, Chouteau M, Keating P, et al. Sferics Noise Reduction in Time-Domain Electromagnetic Systems:Application to MegaTEMⅡ Signal Enhancement[J]. Exploration Geophysics,2010, 41(4):225-239.

[7] 李楠. 时间域航空电磁数据预处理技术研究[D]. 长春:吉林大学, 2009. Li Nan. Research on Airborne Time Domain Electromag-netic Data Preprocessing[D]. Changchun:Jilin University, 2009.

[8] 吕东伟. 吊舱式时间域直升机航空电磁数据处理方法研究[D].成都:成都理工大学, 2011. Lü Dongwei. Methods Study of Helicopter-Borne Towed Bird Time Domain Electromagnetic Data Processing[D]. Chengdu:Chengdu University of Technology, 2011

[9] 尹大伟,林君,朱凯光,等. 时间域航空电磁数据线圈运动噪声去除方法仿真研究[J]. 吉林大学学报(地球科学版), 2013,43(5):1639-1645. Yin Dawei, Lin Jun, Zhu Kaiguang, et al.Simulation Research on Coil Motion Noise Removal for Time Domain Airborne Electromagnetic Data[J].Journal of University(Science Edition),2013, 43(5):1639-1645.

[10] Green A A, Berman M, Switzer P, et al. Transforma-tion for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.

[11] Amato U, Cavalli R M, Palombo A, et al. Experimental Approach to the Selection of the Components in the Minimum Noise Fraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):153-160.

[12] Stone G, Clifford D, Gustafsson J O R, et al. Visualisa-tion in Imaging Mass Spectrometry Using the Minimum Noise Fraction Transform[J]. BMC Research Notes, 2012, 5(1):419

[13] 顾海燕, 李海涛, 杨景辉. 基于最小噪声分离变换的遥感影像融合方法[J]. 国土资源遥感, 2007, 19(2):53-55. Gu Haiyan, Li Haitao, Yang Jinghui.The Remote Sensing Image Fusion Method Based on Minimum Noise Fraction[J].Remote Sensing for Land and Resources,2007, 19(2):53-55.

[14] 李海涛, 顾海燕, 张兵,等. 基于MNF和SVM的高光谱遥感影像分类研究[J]. 遥感信息,2007, 22(5):12-15. Li Haitao, Gu Haiyan, Zhang Bing, et al. Research on Hyperspectral Remote Sensing Image Classification Based on MNF and SVM[J]. Remote Sensing Information, 2007, 22(5):12-15.

[15] Liu Xiang, Gao Lianru, Zhang Bing, et al.An Improved MNF Transform Algorithm in Hyperspectral Images with Complex Mixing Ground Objects[C]//International Congress on Image and Signal Processing(CISP).Sanya:IEEE, 2008:479-483.

[16] 肖雄斌, 厉小润, 赵辽英. 基于最小噪声分离变换的高光谱异常检测方法研究[J]. 计算机应用与软件, 2012, 29(4):125-128. Xiao Xiongbin, Li Xiaorun, Zhao Liaoying. On Anomaly Detection of Hyperspectral Image Based on Minimum Noise Fraction[J]. Computer Application and Software, 2012, 29(4):125-128.

[17] Switzer P, Green A A. Min/Max Autocorrelation Factors for Multivariate Spatial Imagery[R]. Stanford California:Stanford University, 1984.

[1] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[2] 崔永福, 李国发, 吴国忱, 尚帅, 赵锐锐, 罗莉莉. 基于面波模拟和曲波变换的去噪技术[J]. 吉林大学学报(地球科学版), 2016, 46(3): 911-919.
[3] 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301.
[4] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[5] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[6] 巩向博,韩立国,王恩利,杜立志. 压制噪声的高分辨率Radon变换法[J]. J4, 2009, 39(1): 152-0157.
[7] 张鹏,李献勇,陈剑平. 基于小波降噪的隧道围岩监测数据分析[J]. J4, 2008, 38(6): 1010-1014.
[8] 查显杰,傅容珊,戴志阳,刘 斌,邵志刚,薛霆虓. 基于小波包变换的SAR干涉图去噪研究[J]. J4, 2008, 38(3): 489-0494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!