吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 293-301.doi: 10.13278/j.cnki.jjuese.201501303

• 地球探测与信息技术 • 上一篇    下一篇

基于低信噪比条件下新型Seislet变换的阈值去噪方法

刘财1, 崔芳姿1, 刘洋1, 王典1, 刘殿秘2, 张鹏1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 中国石油吉林油田公司地球物理勘探研究院, 吉林 松原 138000
  • 收稿日期:2014-01-16 发布日期:2015-01-26
  • 通讯作者: 刘洋(1979), 男, 教授, 主要从事地震数据处理, 海洋电磁数据处理和地质-地球物理综合研究等工作, E-mail:yangliu1979@jlu.edu.cn E-mail:yangliu1979@jlu.edu.cn
  • 作者简介:刘财(1963), 男, 教授, 博士生导师, 主要从事地震波场正反演理论、综合地球物理等研究, E-mail:liucai@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(41274119,41174080);国家"863"重大计划项目(2012AA09A20103)

Threshold Denoising Method Based on New Seislet Transform in the Condition of Low SNR

Liu Cai1, Cui Fangzi1, Liu Yang1, Wang Dian1, Liu Dianmi2, Zhang Peng1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Research Institute of Geophysical Prospecting, Jilin Oilfield Company, CNPC, Songyuan 138000, Jilin, China
  • Received:2014-01-16 Published:2015-01-26

摘要:

Seislet变换是一种类小波变换方法, 主要根据小波基沿地震同相轴的局部倾角方向来分析数据, 其中, 局部地震倾角的表征是该方法的核心。局部倾角的求取方法有很多种, 但是往往在低信噪比的条件下存在着一些局限。根据共中心点道集中基于时距关系的地震倾角定义, 提出一种适应于低信噪比条件下的倾角求取方法。对比基于时距关系与平面波分解滤波器计算出的局部地震倾角, 结果证明, 该方法能更加准确地表征低信噪比条件下同相轴的倾角信息。将基于时距关系的局部地震倾角用于Seislet框架, 建立表征低信噪比数据的新型Seislet变换方法。在地震数据处理中, 引入语音信号中改进的阈值方法。结合新型Seislet变换, 提出阈值去噪方法, 此方法不但适于地震数据, 而且在提高信噪比方面也优于传统的阈值去噪方法。实际数据处理的结果验证了新型Seislet变换与改进阈值去噪方法的组合能够有效地解决低信噪比条件下的信号提取任务。

关键词: Seislet变换, 低信噪比, 局部地震倾角, 阈值, 去噪

Abstract:

Seislet transform is a wavelet-like transform based on wavelet base that analyzes seismic data along variable local event slopes. The calculation of the local event slopes is the key step of this method.There are many kinds of methods to calculate the local slopes. But in the condition of low SNR, these methods have some limits. We propose a method that is suitable for low SNR based on the definition of the slopes of t-x relationship in CMP traces. Comparing the slopes of t-x relationship in CMP traces with PWD method, we can see that the new method is more accurate in calculating the local slopes. Apply these slopes to Seislet frame to establish a new Seislet transform that characterize low SNR data. In seismic data processing, we introduce one method which works well for acoustic signals. We propose the new threshold method with Seislet transform. It is not only suitable for seismic signals, but also better than the traditional threshold method to improve SNR. The results show that the combination of the new Seislet transform and improved threshold method can extract signal in the condition of low SNR effectively.

Key words: Seislet transform, low SNR, local event slope, threshold, denoising

中图分类号: 

  • P631.4

[1] 张波, 印兴耀, 吴国忱, 等.用小波分析和反演方法联合去除随机噪声的研究[J].石油地球物理勘探, 1999, 34(6):635-641. Zhang Bo, Yin Xingyao, Wu Guochen, et al. Random Noise Elimination Using Wavelet Analysis and Inversion[J]. Oil Geophysical Prospecting, 1999, 34(6):635-641.

[2] 王典, 刘财, 刘洋, 等.基于提升算法和百分位数软阈值的小波去噪技术[J]. 地球物理学进展, 2008, 23(4):1124-1130. Wang Dian, Liu Cai, Liu Yang, et al. Application of Wavelet Transform Based on Lifting Scheme and Percentiles Soft Threshold to Elimination of Seismic Random Noise[J]. Progress in Geophysics, 2008, 23(4):1124-1130.

[3] 樊计昌, 刘明军, 王夫运, 等.小波包节点域和空间域倾角扫描高阶相关去噪技术[J]. 石油地球物理勘探, 2009, 44(6):695-699. Fan Jichang, Liu Mingjun, Wang Fuyun, et al. Dip Scanning High Order Correlation Denoise Technique in Wavelet Packet Node Field and Space Domain[J]. Oil Geophysical Prospecting, 2009, 44(6):695-699.

[4] Zhang Yi, Cheng Lizhi. A New Wavelet Denoising Method of Seismic Signals Based on a Recursive Optimal Thresholding[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2011, 4:14.

[5] 王志强, 韩立国, 巩向博, 等. 起伏地表检波器组合响应[J]. 吉林大学学报:地球科学版, 2014, 44(2):694-703. WangZhiqiang, HanLiguo, GongXiangbo, etal.GeophoneArrayResponseonUndulatingSurface[J].JournalofJilinUniversity:EarthScienceEdition, 2014, 44(2):694-703.

[6] Chauris H, Nguyen T. Seismic Demigration/Migration in the Curvelet Domain[J]. Geophysics, 2008, 73(2):35-46.

[7] Herrmann F J, Wang D, Hennenlent G, et al. Curvelet-Based Seismic Data Processing:A Multiscale and Nonlinear Approach[J]. Geophysics, 2008, 73(1):1-5.

[8] Pennec E L, Mallat S. Sparse Geometric Image Representation with Bandelets[J]. IEEE Trans Image Process, 2005, 14(4):423-438.

[9] Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J]. IEEE Trans Process, 2005, 14(12):2091-2106.

[10] Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Trans Image Process, 2002, 11(6):670-684.

[11] Velisavljevic V. Directionlets:Anisotropic Multi-Directional Representation with Separable Filtering. Lausanne:Ecole Polytechnique Federale de Lausanne, 2005.

[12] Fomel S. Towards the Seislet Transform[J]. SEG Extended Abstracts, 2006, 25(1):2847-2851.

[13] Fomel S, Liu Y. Seislet Transform and Seislet Frame[J]. Geophysics, 2010, 75(3):25-38.

[14] 刘洋, Fomel S, 刘财, 等.高阶Seislet变换及其在随机噪声消除中的应用[J].地球物理学报, 2009, 52(8):2142-2151. Liu Yang, Fomel S, Liu Cai, et al. High-Order Seislet Transform and Its Application of Random Noise Attenuation[J]. Chinese Journal of Geophysics, 2009, 52(8):2142-2151.

[15] 张鹏, 陆文凯. 利用局部倾角的地震成像研究[C]//中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集. 宁波:中国地球物理学会, 中国地震学会, 2010. Zhang Peng, Lu Wenkai. Study of Seismic Imaging by Using Local Event Slopes[C]//Papers of the Twenty-Sixth Annual Meeting of Chinese Geophysical Society and the Thirteenth Academic Conference of Seismological Society of China. Ningbo:Chinese Geophysical Society, Seismological Society of China, 2010.

[16] Fomel S. Applications of Plane-Wave Destruction Filter[J]. Geophysics, 2002, 67(6):1946-1960.

[17] Bona A. Velocity-Less Migration Using Horizontal Slownesses[J]. EGU General Assembly, 2009, 11:EGU2009-3883.

[18] Douma H. Leading-Order Seismic Imaging Using Curvelets[J]. Geophysics, 2007, 72(6):231-248.

[19] Donoho D L, Johnstone J M. Ideal Spatial Adaptation by Wavelet Shrinkage[J]. Biometrika, 1994, 81(3):425-455.

[20] Gao H Y, Bruce A G. WaveShrink with Firm Shrinkage[J]. Statistica Sinica, 1997, 7(4):855-874.

[21] 李冲泥, 胡光锐.一种改进的子波域语音增强方法[J].通信学报, 1999, 20(4):88-91. Li Chongni, Hu Guangrui. A Modified Wavelet Domain Speech Enhancement Method[J]. Journal of China Institute of Communications, 1999, 20(4):88-91.

[22] 许丽群.小波阈值去噪改进算法研究[J].电子测量技术, 2010, 33(8):43-45. Xu Liqun.Research of Improved Algorithm of De-Noising in Wavelet Threshold[J].Electronic Measurement Technology, 2010, 33(8):43-45.

[23] 张新超. Seislet变换去除叠前线性干扰[D]. 成都:成都理工大学, 2009. Zhang Xinchao. Removal of Prestack Linear Noise by Seislet Transform[D]. Chengdu:Chengdu University of Technology, 2009.

[24] Fomel S. Velocity-Independent Time-Domain Seismic Imaging Using Local Event Slopes[J]. Geophysics, 2007, 72(3):139-147.

[25] Fomel S, Grechka V. Nonhyperbolic Reflection Moveout of P Waves:An Overview and Comparison of Reasons[M]. Golden:Center for Wave Phenomena Colorado School of Mines, 2001.

[26] 邓玉娟.基于小波变换的语音阈值去噪算法研究[D].重庆:重庆大学, 2009. Deng Yujuan. Study of Threshold De-Noising Algorithm of Speech Signal Based on Wavelet Transformation[D]. Chongqing:Chongqing University, 2009.

[27] 余晃晶.小波降噪阈值选取的研究[J].绍兴文理学院学报:自然科学版, 2004, 24(9):34-38. Yu Huangjing. Slection of a Wavelet Noise-Reduction Threshold[J]. Journal of Shaoxing University:Natural Science Edition, 2004, 24(9):34-38.

[28] Claerbout, J F. Basic Earth Imaging:Stanford Exploration Project[EB/OL].[2012-10-10]. http://www. stanford. edu/sep/prof/.

[1] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[2] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[3] 朱凯光, 李玥, 孟洋, 王凌群, 谢宾, 程宇奇. 最小噪声分离在航空电磁数据噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(3): 876-883.
[4] 崔永福, 李国发, 吴国忱, 尚帅, 赵锐锐, 罗莉莉. 基于面波模拟和曲波变换的去噪技术[J]. 吉林大学学报(地球科学版), 2016, 46(3): 911-919.
[5] 勾福岩, 刘财, 刘洋, 王博, 冯晅. 基于OC-Seislet变换的海洋涌浪噪声衰减方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 962-970.
[6] 赵娟,李育松,卞建民,张丽姝,杨占梅. 吉林西部地区高砷地下水砷的阈值分析及风险评价[J]. 吉林大学学报(地球科学版), 2013, 43(1): 251-258.
[7] 何玉琼, 徐则民, 王志奇, 张勇. 滑坡降雨阈值模型的应用[J]. J4, 2012, 42(4): 1112-1118.
[8] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[9] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[10] 赵衡, 宋二祥. 诱发区域性滑坡的降雨阈值[J]. J4, 2011, 41(5): 1481-1487.
[11] 王德利, 党丹, 刘伟明, 张亚红. CFP技术层间多次波预测及Curvelet域相减方法[J]. J4, 2011, 41(3): 907-914.
[12] 巩向博,韩立国,王恩利,杜立志. 压制噪声的高分辨率Radon变换法[J]. J4, 2009, 39(1): 152-0157.
[13] 张鹏,李献勇,陈剑平. 基于小波降噪的隧道围岩监测数据分析[J]. J4, 2008, 38(6): 1010-1014.
[14] 查显杰,傅容珊,戴志阳,刘 斌,邵志刚,薛霆虓. 基于小波包变换的SAR干涉图去噪研究[J]. J4, 2008, 38(3): 489-0494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!