吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1490-1500.doi: 10.13278/j.cnki.jjuese.201605205

• 地质工程与环境工程 • 上一篇    下一篇

用镭-226示踪胶州湾的海底地下水排泄

袁晓婕1, 郭占荣2, 黄磊1, 章斌2, 马志勇2, 刘洁2   

  1. 1. 国土资源部广州海洋地质调查局/国土资源部海底矿产资源重点实验室, 广州 510075;
    2. 厦门大学海洋与地球学院, 福建 厦门 361102
  • 收稿日期:2016-01-23 出版日期:2016-09-26 发布日期:2016-09-26
  • 通讯作者: 郭占荣(1965-),男,教授,主要从事海岸带水文地质学和海洋地质的教学与研究工作,E-mail:gzr@xmu.edu.cn E-mail:gzr@xmu.edu.cn
  • 作者简介:袁晓婕(1985-),女,工程师,博士,主要从事水文地球化学、海洋环境、海底地下水排泄方面的研究,E-mail:jieer17@163.com
  • 基金资助:

    国家自然科学基金项目(41072174)

Estimating Submarine Groundwater Discharge into the Jiaozhou Bay Using 226Ra

Yuan Xiaojie1, Guo Zhanrong2, Huang Lei1, Zhang Bin2, Ma Zhiyong2, Liu Jie2   

  1. 1. Guangzhou Marine Geological Survey/Key Laboratory of Marine Mineral Resources, Ministry of Land and Resources, Guangzhou 510075, China;
    2. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
  • Received:2016-01-23 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by National Natural Sciences Foundation of China(41072174)

摘要:

海底地下水排泄(SGD)是全球水循环的一个组成部分,其输送的溶解物质不仅参与海洋的生物地球化学循环,而且影响近岸海域的生态环境。为了评估胶州湾海底地下水排泄状况,通过建立胶州湾内海水中226Ra的质量平衡模型来计算海底地下水排泄通量。胶州湾海水中226Ra的源主要有河流的输入、沉积物扩散输入和地下水的输入,海水系统在稳定状态下,这几种源应该与湾内海水和湾外海水的混合损失达到平衡。除了将地下水输入作为未知项外,对其他源和汇逐个进行量化,计算得知:2011年9-10月胶州湾的海底地下水排泄通量为7.85×106 m3·d-1;2012年4-5月胶州湾的海底地下水排泄通量为4.72×106 m3·d-1。在此基础上,对地下水输入胶州湾的营养盐进行了评价。

关键词: 海底地下水排泄, 镭-226质量平衡, 营养盐, 胶州湾

Abstract:

Submarine groundwater discharge (SGD) is a part of global water cycle, which delivers a large amount of solutes to the biogeochemical cycle and affects the coastal ecological environment. The 226Ra mass balance model was established to estimate the submarine groundwater discharge to the Jiaozhou Bay. The 226Ra sources include river transport, sediment diffusion and SGD, these sources should be in balance with the mixing loss of the bay water and open seawater when the seawater system is in the stable state. Except for the SGD was unknown item, other sources and sinks were quantified one by one. Calculated results showed that the SGD fluxes during September to October in 2011 was 7.85×106 m3·d-1, April to May in 2012 was 4.72×106 m3·d-1. Based on the SGD fluxes, the SGD derived nutrient fluxes were estimated.

Key words: submarine groundwater discharge, mass balance for 226Ra, nutrients, Jiaozhou Bay

中图分类号: 

  • P641.3

[1] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and Pore Water Inputs to the Coastal Zone[J]. Biogeochemistry, 2003, 66:3-33.

[2] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011,26(7):685-694. Li Hailong, Wan Li, Jiao Jiujiu. Hot Issues in the Study of Coastal Hydrogeology[J]. Advances in Earth Science, 2011, 26(7):685-694.

[3] Moore W S. Large Groundwater Inputs to Coastal Waters Revealed by 226Ra Enrichments[J]. Nature, 1996,380:612-614.

[4] Dzhamalov R G, Safronova T I. On Estimating Chemical Discharge into the World Ocean with Groundwater[J]. Water Resources, 2002, 29(6):626-631.

[5] Garrison G H, Glenn C R. Measurement of Submarine Groundwater Discharge in Kahana Bay, O'ahu, Hawai'i[J]. Limnology and Oceanography, 2003, 48(2):920-928.

[6] Xu B, Burnett W, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via Radium Isotopes:Ecological Perspectives[J]. Continental Shelf Research, 2013,66(9):19-28.

[7] Moore W S, Blanton J O, Joye S B. Estimates of Flushing Times, Submarine Groundwater Discharge, and Nutrient Fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111(C9):141-152.

[8] Rahman M M, Lee Y, Kim G, et al. Significance of Submarine Groundwater Discharge in the Coastal Fluxes of Mercury in Hampyeong Bay, Yellow Sea[J]. Chemosphere, 2012, 91(3):320-327.

[9] Kim I, Kim G. Submarine Groundwater Discharge as a Main Source of Rare Earth Elements in Coastal Waters[J]. Marine Chemistry, 2014, 160(3):11-17.

[10] Rodellas V, Garcia O J, Tovar S A, et al. Submarine Groundwater Discharge as a Source of Nutrients and Trace Metals in a Mediterranean Bay (Palma Beach, Balearic Islands)[J]. Marine Chemistry, 2014, 160(3):56-66.

[11] Lee Y W, Kim G, Lim W A, et al. A Relationship Between Submarine Groundwater Borne Nutrients Traced by Ra Isotopes and the Intensity of Dinoflagellate Red-Tides Occurring in the Southern Sea of Korea[J]. Limnology and Oceanography, 2010, 55(1):1-10.

[12] Slomp C P, Van C P. Nutrient Inputs to the Coastal Ocean Through Submarine Groundwater Discharge:Controls and Potential Impact[J]. Journal of Hydrology, 2004, 295(1/2/3/4):64-86.

[13] Kotwicki L, Grzelak K, Czub M, et al. Submarine Groundwater Discharge to the Baltic Coastal Zone:Impacts on the Meiofaunal Community[J]. Journal of Marine Systems, 2014, 129(2):118-126.

[14] Moore W S. The Effect of Submarine Groundwater Dis-charge on the Ocean[J]. The Annual Review of Marine Science, 2010, 2(3):59-88.

[15] Beck A J, Rapaglia J P, Cochran J K. Radium Mass-Balance in Jamaica Bay, NY:Evidence for a Substantial Flux of Submarine Groundwater[J]. Marine Chemistry, 2007, 106(3/4):419-441.

[16] 袁晓婕,郭占荣,刘洁,等. 咸水环境下沉积物中镭的解吸特点[J].地球学报, 2014, 35(9):582-588. Yuan Xiaojie, Guo Zhanrong, Liu Jie, et al. Characteristics of Radium Desorption from Sediments in the Salt Water Environment[J]. Acta Geoscientica Sinica,2014,35(9):582-588.

[17] 郭占荣,黄磊,袁晓婕,等. 用镭同位素评价九龙江河口区的地下水输入[J].水科学进展, 2011,22(1):118-125. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating Submarine Groundwater Discharge to Jiulong River Estuary Using Ra Isotopes[J]. Advances in Water Science, 2011,22(1):118-125.

[18] 苏妮. 镭同位素示踪的近岸水体混合和海底地下水排泄[D].上海:华东师范大学, 2013. Su Ni. Tracing Coastal Water Mixing Processes and Submarine Groundwater Discharge by Radium Isotopes[D]. Shanghai:East China Normal University, 2013.

[19] 季仲强,胡丹,翁焕新,等. 近岸海域226Ra的时空变化与海底地下水排泄估算[J].地球化学, 2012,41(1):15-22. Ji Zhongqiang, Hu Dan, Weng Huanxin, et al. Temporal and Spatial Variations of 226Ra in Coastal Sea and the Estimation of Submarine Groundwater Discharge (SGD)[J]. Geochimica, 2012,41(1):15-22.

[20] 刘花台,郭占荣,高爱国,等. 闽江河口区水体中镭的分布特征及河水与海水的混合速率[J].吉林大学学报(地球科学版), 2013,43(6):1966-1971. Liu Huatai, Guo Zhanrong, Gao Aiguo, et al. Distribution Characteristics of Radium and Determination of Transport Rate in the Min River Estuary Mixing Zone[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6):1966-1971.

[21] Garcia-Solsona E, Masque P, Garcia-Orellana J, et al. Estimating Submarine Groundwater Discharge Around Isola La Cura, Northern Venice Lagoon (Italy), by Using the Radium Quartet[J]. Marine Chemistry, 2008,109(3/4):292-306.

[22] 王博,郭占荣,袁晓婕,等. 胶州湾地区水体中镭同位素分布特征及其影响因素[J].核技术, 2014,37(3):1-9. Wang Bo, Guo Zhanrong, Yuan Xiaojie, et al. Distribution Characteristics of Radium Isotopes and Their Influence Factors in the Water of Jiaozhou Bay Area[J]. Nuclear Techniques, 2014, 37(3):1-9.

[23] Charette M A, Buesseler K O, Andrews J E. Utility of Radium Isotopes for Evaluating the Input and Transport of Groundwater-Derived Nitrogen to a Cape Cod Estuary[J]. American Society of Limnology and Oceanography, 2001,46:465-470.

[24] 贾成霞. 基于γ谱分析的胶州湾同位素海洋学研究[D]. 厦门:厦门大学,2003. Jia Chengxia. The Study on Isotopic Oceanography in the Jiaozhou Bay Based on Gamma Spectroscopic Analysis[D]. Xiamen:Xiamen University,2003.

[25] 门武. 镭同位素示踪的黄海和东海海洋学研究[D]. 厦门:厦门大学,2008. Men Wu. The Study on the Oceanography of the Yellow Sea and the East China Sea Traced by Radium Isotopes[D]. Xiamen:Xiamen University, 2008.

[26] 李广雪,杨子庚,刘勇. 中国东部海域海底沉积物成因环境图[M]. 北京:科学出版社,2005. Li Guangxue, Yang Zigeng, Liu Yong. Map of Seafloor Sediment Formation Environment in East China Sea[M]. Beijing:Science Press,2005.

[27] 马志勇. 基于氡-222的胶州湾海底地下水排泄研究[D]. 厦门:厦门大学,2013. Ma Zhiyong. Study of Submarine Groundwater Discharge Using Radon in Jiaozhou Bay[D]. Xiamen:Xiamen University,2013.

[28] 史经昊. 胶州湾演变对人类活动的响应[D].青岛:中国海洋大学, 2010. Shi Jinghao. Anthropogenic Influences on the Evolution of Jiaozhou Bay[D]. Qingdao:Ocean University of China, 2010.

[29] 郭占荣,马志勇,章斌,等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J].地球科学:中国地质大学学报, 2013,38(5):1073-1090. Guo Zhanrong, Ma Zhiyong, Zhang Bin, et al. Tracing Submarine Groundwater Discharge and Associate Nutrient Fluxes into Jiaozhou Bay by Continuous 222Rn Measurements[J]. Earth Science:Journal of China University of Geosciences, 2013,38(5):1073-1090.

[30] Hwang D W, Kim G, Lee W C, et al. The Role of Submarine Groundwater Discharge (SGD) in Nutrient Budgets of Gamak Bay, a Shellfish Farming Bay, in Korea[J]. Journal of Sea Research, 2010,64(3):224-230.

[31] Rapaglia J, Koukoulas S, Zaggia L, et al. Quanti-fication of Submarine Groundwater Discharge and Optimal Radium Sampling Distribution in the Lesina Lagoon, Italy[J]. Journal of Marine Systems, 2012,91(1):11-19.

[32] Smoak J M, Sanders C J, Patchineelam S R, et al. Radium Mass Balance and Submarine Groundwater Discharge in Sepetiba Bay, Rio de Janeiro State, Brazil[J]. Journal of South American Earth Sciences, 2012,39(6):44-51.

[33] Luo X, Jiao J J, Moore W S, et al. Submarine Groundwater Discharge Estimation in an Urbanized Embayment in Hong Kong via Short-Lived Radium Isotopes and Its Implication of Nutrient Loadings and Primary Production[J]. Marine Pollution Bulletin, 2014,82(1/2):144-154.

[1] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[2] 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
[3] 刘花台,郭占荣,高爱国,袁晓婕,李开培,章斌,马志勇. 闽江河口区水体中镭的分布特征及河水与海水的混合速率[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1966-1971.
[4] 杜尚海,苏小四,郑连阁. CO2泄漏停止后天然条件下浅层含水层的自我修复能力评价[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1980-1986.
[5] 石旭飞,张文静,王寒梅,焦珣,何海洋. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报(地球科学版), 2013, 43(1): 220-227.
[6] 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475.
[7] 石旭飞, 董维红, 李满洲, 张岩. 河南平原浅层地下水年龄[J]. J4, 2012, 42(1): 190-197.
[8] 姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. J4, 2011, 41(5): 1535-1541.
[9] 姜利国, 梁冰. 地球化学作用下饱和-非饱和介质水力-传质-传热耦合模型[J]. J4, 2011, 41(5): 1529-1534.
[10] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[11] 辛欣, 卢文喜, 罗建男, 陈社明. DNAPLs污染含水层多相流数值模拟模型的替代模型[J]. J4, 2011, 41(3): 855-860.
[12] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[13] 刘丽红, 束龙仓, 鲁程鹏. 基于管道流模型的岩溶含水系统降雨泉流量响应规律--以贵州后寨典型小流域为例[J]. J4, 2010, 40(5): 1083-1089.
[14] 卞建民, 查恩爽, 汤洁, 马力, 陈刚. 吉林西部砷中毒区高砷地下水反向地球化学模拟[J]. J4, 2010, 40(5): 1098-1103.
[15] 万玉玉, 苏小四, 董维红, 侯光才. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. J4, 2010, 40(3): 623-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!