吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1808-1814.doi: 10.13278/j.cnki.jjuese.201606204

• 地质工程与环境工程 • 上一篇    下一篇

挤密条件下U型地埋管换热器换热效率的理论分析及数值模拟

陈宝义, 岳韬, 曹品鲁, 王如生, 王茂森, 博坤, 龙翔, 鲁思宇   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2016-03-15 出版日期:2016-11-26 发布日期:2016-11-26
  • 通讯作者: 岳韬(1991),男,博士研究生,主要从事地层热物性测试与仪器方面的研究,E-mail:435954155@qq.com E-mail:435954155@qq.com
  • 作者简介:陈宝义(1964),男,教授,主要从事浅层地热开发与钻探技术研究,E-mail:chenby@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51174097)

Theoretical Analysis and Numerical Simulation of Heat Exchange Efficiency of U-Tube Ground Heat Exchanger Under the Condition of Soil Compaction

Chen Baoyi, Yue Tao, Cao Pinlu, Wang Rusheng, Wang Maosen, Bo Kun, Long Xiang, Lu Siyu   

  1. Construction Engineering College of Jilin University, Changchun 130026, China
  • Received:2016-03-15 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China(51174097)

摘要: 土层的导热系数是影响地源热泵地埋管换热器换热效率的重要因素之一,与土样的密度密切相关。为了提高地源热泵换热器换热效率,本文基于柱热源理论,建立了挤密钻进条件下换热器的传热理论模型,对换热器的换热效率进行了计算,并利用Ansys有限元软件对土层挤密条件下换热器的换热效果进行了数值分析。结果表明,与传统方法相比,土层挤密可有效降低钻孔周围的热阻,U型管换热器的换热效率可提高17%~20%。

关键词: 地源热泵, 地埋管换热器, 挤密钻进, 土层挤密

Abstract: The coefficient of thermal conductivity of soil, which has close relationship to the density of the soil, is one of the important factors that impact the heat transfer efficiency of ground heat exchanger (GHE). In order to enhance the heat transfer efficiency of ground source heat pump heat exchanger. The heat transfer model of GHE under the condition of compaction drilling based on the cylindrical heat source theory has been established and thermal efficiency of heat exchanger has been calculated in this paper. Finally the heat transfer efficiency of GHE under the condition of soil compaction have been simulated using Ansys finite element software.With comparison to the traditional methods, the soil compaction can effectively reduce the thermal resistance around the borehole and the heat transfer efficiency of U-tube heat exchanger can be enhanced by 17%-20%.

Key words: ground source heat pump, ground heat exchanger, compaction drilling, soil compaction

中图分类号: 

  • TK521.2
[1] 王瑞华,张亚庭,王普.土壤源热泵中土壤导热系数测定系统设计[J].计算机测量与控制,2008,16(2):171-184. Wang Ruihua, Zhang Yating,Wang Pu. Design of Ground Thermal Conductivity Test System in Ground-Coupled Heat Pump[J]. Computer Measurement & Control, 2008, 16(2):171-184.
[2] 皇甫红旺,晋华.含水率对工程常用土导热系数影响的试验研究[J].水电能源学, 2015, 33(12):122-124. Huangpu Hongwang, Jin Hua. Experimental Study of Thermal Conductivity of Common Engineering Soil with Different Water Content[J]. Water Resources and Power, 2015, 33(12):122-124.
[3] 周艳,李栋伟.不同因素对盐渍土导热系数影响的敏感性分析[J].煤炭技术, 2016, 35(1):120-122. Zhou Yan, Li Dongwei. Sensitivity Analysis of Different Factors on Thermal Conductivity Coefficient of Effect of Saline Soil[J]. Coal Technology, 2016, 35(1):120-122.
[4] Salomone L A, Kovacs W D, Kusuda T. Thermal Pe-rformance of Fine-Grained Soils[J]. Journal of Geotechnical Engineering, 1984, 110(3): 359-374.
[5] 徐学祖,王家澄,张立新.冻土物理学[M].北京: 科学出版社,2001. Xu Xuezu, Wang Jiacheng, Zhang Lixin.Frozen Soil Physics[M]. Beijing: Science Press, 2001.
[6] 孙庆,曹品鲁,殷琨. 冲击挤密作用下土体变形机理的有限元分析[J].煤田地质与勘探, 2009, 37(2):36-38. Sun Qing, Cao Pinlu, Yin Kun. Finite Element Analysis on Deformation Mechanism of Soils Under Percussion-Compact[J]. Coal Geology & Exploration, 2009, 37(2): 36-38.
[7] 张永光. 冲击挤密潜孔锤外表减阻结构优化设计及试验研究[D].长春: 吉林大学, 2011. Zhang Yongguang.Optimum Design and Experimental Research on the External Surface-Drag Reduction Structure of Percussion-Compact DTH Hammer[D]. Changchun: Jilin University, 2011.
[8] 卢文阁,郑治川,池景军.冲击回转挤密钻头及钻进方法的研究[J].长春地质学院学报,1997, 27(3):352-358. Lu Wenge, Zheng Zhichuan, Chi Jingjun. The Reseach of Precussion-Rotary Extruding Bit and Its Drilling Method[J]. Journal of Changchun University of Earth Science, 1997, 27(3):352-358.
[9] 郑永强. 黄土地基挤密机理与工程应用研究[D].西安: 西安建筑科技大学, 2011. Zheng Yongqiang. The Loess Foundation Compaction Mechanism and Engineering Application Research[D]. Xi'an: Xi'an University of Architecture and Technology, 2011.
[10] 宋勇军. 挤密桩挤土效应的理论分析与试验研究[D].西安: 西安建筑科技大学, 2006. Song Yongjun. Theory Analysis and Test Study on the Compaction Effect of Compaction Piles[D]. Xi'an: Xi'an University of Architecture and Technology, 2006.
[11] Ingersoll L R, Plass H J. Theory of the Ground Pipe Heat Source for the Heat Pump[J].Ashve Tran sactions,1948, 54:339-348.
[12] Carslaw H S, Jaeger J C. Conduction of Heat in So-lids[M]. 2nd ed. London: Oxford University Press, 1959.
[13] 高青,余传辉. 地下土壤导热系数简化柱热源模型确定方法[J]. 太阳能学报,2007, 28(12):1042-1046. Gao Qing, Yu Chuanhui. The Simplified Cylindrical Source Model for Determining the Thermal Conductivity Underground Soil[J]. Acta Energiae Solaris Sinica, 2007, 28(12):1042-1046.
[14] Kavanaugh S P, Rafferty K. Ground-Source Heat Pu-mps: Design of Geothermal Systems for Commercial and Institutional Buildings[J]. Ashrae Transactions, 1997,98(2):599-606.
[15] Liu Jun, Zhang Xu, Gao Jun, et al. Evaluation of Heat Exchange Rate of GHE in Geothermal Heat Pump Systems[J]. Renewable Energy,2009,34:2898-2904.
[16] Yang Weibo, Shi Mingheng, Liu Guangyuan, et al. A Two-Region Simulation Model of Vertical U-Tube Ground Heat Exchanger and Its Experimental Verification[J]. Applied Energy,2009, 86: 2005-2012.
[17] Ismael R,Maestre F. Javier González Gallero. Per-formance Assessment of a Simplified Hybrid Model for a Verticalground Heat Exchanger[J]. Energy and Buildings, 2013, 66:437-444.
[1] 刘春雷,王贵玲,王婉丽,蔺文静. 基于现场热响应测试方法的地下岩土热物性分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1602-1608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!