吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1135-1153.doi: 10.13278/j.cnki.jjuese.20170022

• 地质与资源 • 上一篇    下一篇

陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义

赵希林1, 姜杨1, 邢光福1, 于胜尧2, 彭银彪2, 黄文成1, 王存智1, 靳国栋1   

  1. 1. 中国地质调查局南京地质调查中心, 南京 210016;
    2. 海底科学与探测技术教育部重点实验室/中国海洋大学海洋地球科学学院, 山东 青岛 266100
  • 收稿日期:2017-08-25 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 邢光福(1965-),男,研究员,主要从事华南基础地质方面的研究,E-mail:4962126@qq.com E-mail:4962126@qq.com
  • 作者简介:赵希林(1980-),男,副研究员,主要从事岩石学及矿床学方面的研究,E-mail:zxl24@126.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0600205);中国地质调查局项目(121201008000150002,12120113070800,12120114005801)

Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block

Zhao Xilin1, Jiang Yang1, Xing Guangfu1, Yu Shengyao2, Peng Yinbiao2, Huang Wencheng1, Wang Cunzhi1, Jin Guodong1   

  1. 1. Nanjing Center, China Geological Survey, Nanjing 210016, China;
    2. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education/College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China
  • Received:2017-08-25 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Key Research and Development Plan (2016YFC0600205) and Project of China Geological Survey (121201008000150002, 12120113070800, 12120114005801)

摘要: 华夏地块与扬子地块的拼合时限与方式长期存在争议。本文对出露于浙江诸暨一带的原"陈蔡岩群"进行了详细的露头尺度解剖。野外地质调查表明,原"陈蔡岩群"主要由不同性质的外来岩块与基质组成。其中:代表外来岩块的大理岩及斜长角闪岩的变质年龄分别为(424.7±2.9)和(420.6±1.8)Ma,成岩年龄分别为(479.2±9.5)~(424.7±2.9)Ma和(507.7±7.8)~(420.6±1.8)Ma,斜长角闪岩原岩为具OIB(洋岛玄武岩)特征的碱性玄武岩,大理岩的原岩为海相碳酸盐岩,二者共同构成了洋岛海山组合。代表原地岩块的变长石石英砂岩主要物源区为3 620~1 530 Ma形成于活动大陆边缘和大陆岛弧环境下的古老地壳物质;与之构造混杂接触的斜长角闪岩变质年龄为(438.0±2.5)Ma,其原岩分别为形成于消减带岛弧环境的岛弧拉斑玄武岩、形成于俯冲环境下的富Nb玄武岩和洋岛海山环境下的具OIB特征的碱性玄武岩类。代表基质的含榴黑云斜长片麻岩LA-MC-ICP-MS锆石U-Pb年龄测试结果表明,其变质年龄为(441.0±3.0)Ma,碎屑206Pb/238U年龄多数为840~780 Ma,反映其物源主要来自于新元古代,且最年轻的沉积年龄限定在598 Ma,说明片麻岩原岩可能为早古生代沉积地层。陈蔡地区该套岩石组合的发现表明,原"陈蔡岩群"的构造属性应为早古生代俯冲增生杂岩。结合测区及龙游地区新发现的加里东期麻粒岩和退变榴闪岩,提出扬子与华夏两大地块碰撞于445~420 Ma。

关键词: 俯冲增生杂岩, 加里东期, 华夏地块, 扬子地块, 洋岛海山, 陈蔡岩群, 地球化学

Abstract: The timing and model of the collage between Cathaysia block and Yangtze block have been debated for a long time. In this study, a detailed profile anatomy from "Chencai Group" was carried out on outcrop scale in Zhejiang. The field geological survey showed that the "Chencai Group" mainly consists of exotic rocks and matrix. The metamorphic age of the marble and amphibolite from the exotic rocks are (424.7±2.9) and (420.6±1.8) Ma respectively, and their diagenesis ages fall between (479.2±9.5)-(424.7±2.9) Ma and (507.7±7.8)-(420.6±1.8) Ma respectively. The protoliths of amphibolites show the OIB characteristics similar to those of alkaline basalts, and the marble protoliths belong to marine carbonate rocks that together make up the combination of ocean island seamount. The provenance of autochthonous feldspar quartz sandstone was the ancient crust in a continental margin and continental arc environment aged between 3 620-1 530 Ma. The protoliths of amphibolites were island arc tholeiite formed in a subduction zone, and Nb-rich basalts formed in a subduction environment,and alkaline basalts with OIB features in an ocean island seamount environment. The LA-MC-ICP-MS zircon U-Pb data indicated that the metamorphic age of the matrix garnet-bearing biotite-plagioclase gneiss is (441.0±3.0) Ma, with detrital age of 840-780 Ma. These data demonstrated that the source of the gneisses was mainly formed in the Neoproterozoic, with the youngest depositional age of 598 Ma, an Early Paleozoic sedimentary strata. The recognition of the rock units in the Chencai region showed that the "Chencai Group" belonged to the early Paleozoic subduction accretionary complex. In combination with the Caledonian granulite and garnet amphibolite in the Longyou area, the collision between the Cathaysia and Yangtze block occurred during 445-420 Ma.

Key words: subduction-accretionary complex, Caledonian, Cathaysia block, Yangtze block, ocean island seamount, Chencai Group, geochemistry

中图分类号: 

  • P585.3
[1] 水涛, 徐步台, 梁如华, 等. 绍兴-江山古陆对接带[J]. 科学通报, 1986, 31(6):444-448. Shui Tao, Xu Butai, Liang Ruhua, et al. The Ancient Land Docking Zone Between Shaoxing-Jiangshan[J]. Chinese Science Bulletin, 1986, 31(6):444-448.
[2] 周新民, 朱云鹤. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质[J]. 中国科学:D辑:地球科学, 1992, 22(3):296-304. Zhou Xinmin, Zhu Yunhe. Magmatic Mixing and Precambrian Geology on Both Sides of Jiang-Shao Fault Zone[J]. Science in China:Series D:Earth Science, 1992, 22(3):296-304.
[3] Li Z X, Li X H, Wartho J A, et al. Magmatic and Metamorphic Events During the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China:New Age Constraints and P-T Conditions[J]. GSA Bulletin, 2010, 122(5/6):772-793.
[4] Zhao G C, Cawood P A. Precambrian Geology of China[J]. Precambrian Research, 2012, 222/223:13-54.
[5] Li X H, Li Z X, Li W X. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China:A Synthesis[J]. Gondwana Research, 2014, 25:1202-1215.
[6] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7):1035-1053. Shu Liangshu. An Analysis of Principal Features of Tectonic Evolution in South China Block[J]. Geological Bulletin of China,2012, 31(7):1035-1053.
[7] Guo L Z, Shi Y S, Lu H F, et al. The Pre-Devonian Tectonic Patterns and Evolution of South China[J]. Journal of Asian Earth Sciences, 1989, 3(1):87-93.
[8] Wang X L, Zhou J C, Griffin W L, et al. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1):117-131.
[9] Wang Y J, Fan W M, Zhang G W, et al. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies[J]. Gondwana Research,2012, 23(4):1273-1305.
[10] Wang X S, Gao J, Klemd R, et al. Early Neo-proterozoic Multiple Arc-Back-Arc System Formation During Subduction-Accretion Processes Between the Yangtze and Cathaysia Blocks:New Constraints from the Supra-Subduction Zone NE Jiangxi Ophiolite (South China)[J]. Lithos, 2015, 236/237:90-105.
[11] Wang Y J, Zhang Y Z, Fan W M. Early Neo-proterozoic Accretionary Assemblage in the Cathaysia Block:Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses[J]. Precambrian Research, 2014, 249(4):144-161.
[12] Yao J L, Shu L S, Santosh M, et al. Palaeozoic Metamorphism of the Neoproterozoic Basement in NE Cathaysia:Zircon U-Pb Ages, Hf Isotope and Whole Rock Geochemistry from the Chencai Group[J]. Journal of the Geological Society, 2013, 171(2):281-297.
[13] Yao J L, Shu L S, Santosh M. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt:Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China[J]. Precambrian Research, 2015, 262(1):84-100.
[14] Zheng Y F, Xiao W J,Zhao G C. Introduction to Tectonics of China[J]. Gondwana Research, 2013, 23(4):1189-1206.
[15] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust[J]. Lithos, 2007, 96(1/2):127-150.
[16] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism Along the Western Margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1):51-67.
[17] 徐先兵, 汤帅, 李源, 等. 江南造山带东段新元古代至早中生代多期造山作用特征[J]. 中国地质, 2015, 42(1):33-50. Xu Xianbing, Tang Shuai, Li Yuan, et al. Characteristics of Neoproterozoic-Early Mesozoic Multiphase Orogenic Activities of Eastern Jiangnan Orogen[J]. Geology in China, 2015, 42(1):33-50.
[18] 姜杨, 赵希林, 林寿发, 等. 扬子克拉通东南缘新元古代陆缘弧型TTG的厘定及其构造意义[J]. 地质学报, 2014, 88(8):1461-1474. Jiang Yang, Zhao Xilin, Lin Shoufa, et al. Identificationand Tectonic Implication of Neoproterozoic Continental Margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze Carton[J]. Acta Geoscientica Sinica, 2014, 88(8):1461-1474.
[19] Gu X X, Liu J M, Zheng M H, et al. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China:Geochemical Evidence[J]. Journal of Sedimentary Research, 2002, 72(3):393-407.
[20] 马瑞士. 华南构造演化新思考:兼论"华夏古陆"说中的几个问题[J]. 高校地质学报, 2006, 12(4):448-456. Ma Ruishi. New Thought About The Tectonic Evolution of the South China:With Discussion on Several Problems of the Cathaysian Old Land[J]. Geological Journal of China Universities, 2006, 12(4):448-456.
[21] 任纪舜, 李崇. 华夏古陆及相关问题:中国南部前泥盆纪大地构造[J]. 地质学报, 2016, 90(4):607-614. Ren Jishun, Li Chong. Cathaysian Old Land and Relevant Problems:Pre-Devonian Tectonic of Southern China[J]. Acta Geoscientica Sinica, 2016, 90(4):607-614.
[22] 王存智, 姜杨, 邢光福, 等. 陈蔡岩群下河图斜长角闪岩年代学、地球化学特征及其构造意义[J]. 岩石矿物学杂志, 2016, 35(3):425-442. Wang Cunzhi, Jiang Yang, Xing Guangfu, et al. Geochronological and Geochemical Characteristics of the Xiahetu Amphibolites from Chencai Group and Their Tectonic Implications[J]. Acta Petrologica et Mineralogica, 2016, 35(3):425-442.
[23] 董学发,余盛强,唐增才, 等. 浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J]. 中国地质,2016, 43(3):817-828. Dong Xuefa, Yu Shengqiang, Tang Zengcai, et al. Geochemical Characteristics of the Intra-Oceanic Arc Type Metabasic-Volcanics in Chencai Accretion Complex of Zhejiang Province and Their Geological Significance[J]. Geology in China, 2016, 43(3):817-828.
[24] 彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用:I:来自糯垌蛇绿岩的新证据[J]. 地球科学, 2016, 41(5):765-777. Peng Songbo, Liu Songfeng, Lin Musen, et al. Early Paleozoic Subduction in Cathaysia:I:New Evidence from the Nuodong Ophiolite[J]. Earth Science, 2016, 41(5):765-777.
[25] 彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用:Ⅱ:大爽高镁-镁质安山岩新证据[J]. 地球科学, 2016, 41(6):931-947. Peng Songbo, Liu Songfeng, Lin Musen, et al. Early Paleozoic Subduction in Cathaysia:Ⅱ:New Evidence from the Dashuang High Magnesian-Magnesian Andesite[J]. Earth Science, 2016, 41(6):931-947.
[26] 孔祥生, 李志飞, 冯长根. 浙江陈蔡地区前寒武纪地质[M]. 北京:地质出版社, 1995:1-119. Kong Xiangsheng, Li Zhifei, Feng Changgen. Precambrian Geology in Chencai of Zhejiang Province[M]. Beijing:Geological Publishing House, 1995:1-119.
[27] Zhao L, Zhai M G, Zhou X W, et al. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China:Implications for Petrogenesis and Tectonic Setting[J]. Lithos, 2015, 236/237:226-244.
[28] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[29] Pearce J A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust[J]. Lithos, 2008, 100(1/2/3/4):14-48.
[30] Green N L. Influence of Slab Thermal Structure on Basalt Source Regions and Melting Conditions:REE and HFSE Constraints on from the Garibaldi Volcanic Belt, Northern Cascadia Subduction System[J]. Lithos, 2006, 87(1/2):23-49.
[31] Shervais J W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitc Lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-108.
[32] Regelous M, Hofmann A W, Abouchami W, et al. Geochemistry of Lavas from the Emperor Seamounts and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42Ma[J]. Journal of Petrology, 2003, 44(1):113-140.
[33] Melezhik V A, Gorokhov I M, Fallick A E, et al. Strontium and Carbon Isotope Geochemistry Applied to Dating of Carbonate Sedimentation:An Example from High-Grade Rocks of the Norwegian Caledonides[J]. Precambrian Research, 2001, 108(3/4):267-292.
[34] 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版), 1979, 7(2):51-60. Wang Yiyou, Guo Wenying, Zhang Guodong. Applicationof Several Geochemical Marks in the Sedimentary Environment of Funing Group in Jinhu Depression[J]. Journal of Tongji University (Natural Edition), 1979, 7(2):51-60.
[35] 徐步台. 陈蔡群大理岩的碳氧同位素组成及其地质应用[J]. 浙江地质, 1986, 2(2):49-54. Xu Butai. Carbon and Oxygen Isotopic Compositions of Marbles in Chencai Group and Their Geological Applications[J]. Geology in Zhejiang, 1986, 2(2):49-54.
[36] Keller J, Hoefs J. Stable Isotope Characteristics of Recent Nnatrocarbonatites from Oldoinyo Lengai[M]. Heidelberg:Springer Press, 1995:113-123.
[37] Kepezhinaskas P K, Defant M J, Drummond M S. Progressive Enrichment of Island-Arc Mantle by Melt-Peridotite Interaction from Kamchatka Adakites[J]. Geochimica et Cosmochimica Acta, 1996, 60(7):1217-1229.
[38] Defant M J, Drummond M S,Mount S T. Helens:Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc[J]. Geology, 1993, 21(6):547-550.
[39] Sajona F G, Maury R C, Bellon H, et al. Initiation of Subduction and the Generation of Slab Melt in Western and Eastern Mindanao, Philippines[J]. Geology, 1993, 21(11):1007-1010
[40] Sajona F G, Maury R C, Bellon H, et al. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37(3):693-726.
[41] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6):1763-1783. Tan Hongqi, Liu Yuping. Genesis of Amphibolite in Mengdong Group-Complex in Southeastern Yunnan and Its Tectonic Significance[J].Journal of Jilin University (Earth Science Edition), 2017, 47(6):1763-1783.
[42] Wilson M. Igneous Petrogenesis[M]. London:Ox-ford University Press, 1989:245-285.
[43] Moore G M, Carmichael I S E,Renne P. Basaltic Volcanism and Extension Near the Intersection of the Sierra Madre Volcanic Province and the Mexian Volcanic Belt[J]. Geological Society of America Bulletin, 1994, 106(3):383-394.
[44] 牛耀龄. 板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题[J]. 科学通报, 2010, 55(2):103-114 Niu Yaoling. Some of the Basic Concepts and Problems of the Origin of the Island Ocean Basalts (OIB)[J]. Chinese Science Bulletin, 2010, 55(2):103-114.
[45] Meschede M. A Method of Discriminating Between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram[J]. Chemical Geology, 1986, 56(3/4):207-218.
[46] Pearce J A, Cann J R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analysis[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300.
[47] Wood D A. The Application of a Th-Hf-Ta Diagram to Problem of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30.
[48] Condie K C. Sources of Proterozoic Mafic Dyke Swarms:Constraints from Th/Ta and La/Yb Ratios[J]. Precambrian Research, 1997, 81(1/2):3-14.
[49] Thompson R N, Morrison M A, Hendy G L, et al. An Assessment of the Relative Roles of a Crust and Mantle in Magma Genesis:An Elemental Approach[J]. Philosophical Transactions of the Royal Society of London, 1984, 310:549-590.
[50] Tatsumi Y. High-Mg Andesites in the Setouchi Vo-lcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation?[J]. Annual Review of Earch and Planetary Science Letters, 2006, 34(1):467-499.
[51] Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians[J]. Journal of Petrology, 1994, 35(1):163-204.
[52] Furukawa Y,Tatsumi Y. Melting of a Subducting Slab and Production of High-Mg Andesite Magma:Unusual Magmatism in SW Japan at 13-15 Ma[J]. Geophysical Research Letters, 1999, 26(15):2271-2274.
[53] Tatsumi Y, Hanyu T. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere:Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan[J]. Geocheimistry, Geophysics, Geosystems, 2003, 4(9):1-19.
[54] Castillo P R. An Overview of Adakite Petrogensis[J]. Chinese Science Bulletin, 2006, 51(3):257-268.
[55] Pearce J A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J. Continental Basalt s and Mantle Xenoliths. Nantwich:Shiva Publications, 1983:231-249.
[56] Pearce J A, Norry M J. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47.
[57] Bhatia M R. Plate Tectonics and Geochemical Com-position of Sandstones[J]. The Journal of Geology, 1983, 91(6):611-627.
[58] 杨江海, 杜远生, 徐亚军, 等. 砂岩的主量元素特征与盆地物源分析[J]. 中国地质, 2007, 34(6):1032-1044. Yang Jianghai, Du Yuansheng, Xu Yajun, et al. Major Element Characteristics of Sandstones and Provenance Analysis of Basins[J]. Geology in China, 2007, 34(6):1032-1044.
[59] 高林志, 丁孝忠, 刘燕学, 等. 江山-绍兴断裂带陈蔡岩群片麻岩SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 2014, 33(5):641-648. Gao Linzhi, Ding Xiaozhong, Liu Yanxue, et al. SHRIMP Zircon U-Pb Dating of Neoproterozoic Chencai Complex in Jiangshan-Shaoxing Fault Zone and Its Implications[J]. Geological Bulletin of China, 2014, 33(5):641-648.
[60] 胡艳华, 顾明光, 徐岩, 等. 浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J]. 地质通报, 2011, 30(11):1661-1670. Hu Yanhua, Gu Mingguang, Xu Yan, et al. The Confirmation of the Age of Caledonian Chencai Group in Zhuji Area of Zhejiang Province and Its Geological Significance[J]. Geological Bulletin of China, 2011, 30(11):1661-1670.
[61] Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland[J]. Bulletin de la Commission Geologigue de Finlande, 1953, 160:1-64.
[62] 陈绍海, 周新华, 李继亮, 等. 浙江陈蔡群斜长角闪岩的地球化学特征及其大地构造背景探讨[J]. 地质科学, 1999, 34(2):154-165. Chen Shaohai, Zhou Xinhua, Li Jiliang, et al. Geochemistry of the Amphibolites from Chencai Group, Zhejiang Province:Implications for the Tectonic Settings[J]. Chinese Journal of Geology, 1999, 34(2):154-165.
[63] 兰玉琦, 叶瑛, 兰翔, 等. 浙江陈蔡群孔兹岩系的变质地质学研究[J]. 浙江大学学报(自然科学版), 1995, 29(3):303-309. Lan Yuqi, Ye Ying, Lan Xiang, et al. Metamorphic Geological Research on Khondalite Series in Chencai Group, Zhejiang Province[J]. Journal of Zhejiang University (Natural Science), 1995, 29(3):303-309.
[64] 李福佩, 董传万, 沈忠悦, 等. 浙北诸暨陈蔡地区韧性剪切带的研究[J]. 浙江大学学报(自然科学版), 1991, 25(6):644-650. Li Fupei, Dong Chuanwan, Shen Zhongyue, et al. Study on Ductile Shear Zone of Chencai Area in Zhuji, Zhejiang Province[J]. Journal of Zhejiang University (Natural Science), 1991, 25(6):644-650.
[65] 叶瑛, 兰玉琦, 陈彦绍, 等. 浙江省陈蔡群的40Ar-39Ar年龄与变质年代[J]. 岩石学报, 1994, 10(2):193-201. Ye Ying, Lan Yuqi, Chen Yanshao, et al.40Ar-39Ar Age and Metamorphic Age of Chencai in Zhejiang Province[J]. Acta Petrologica Sinica, 1994, 10(2):193-201.
[66] 叶瑛, 兰玉琦, 沈忠悦. 浙江陈蔡群两类斜长角闪岩的地球化学及原岩构造环境[J]. 矿物岩石地球化学通报, 1995,14(1):7-12. Ye Ying, Lan Yuqi, Shen Zhongyue. Geochemistryand Prospective Tectonic Setting of Two Types of Amphibolites of Chencai Group in Zhejiang Province[J]. Bulletin of Mineralogy, Pertology and Geochemistry, 1995,14(1):7-12.
[67] 赵国春, 孙德有. 浙西南陈蔡群变质阶段划分及变质作用p-T-D轨变研究[J]. 长春地质学院学报, 1994, 24(3):246-253. Zhao Guochun, Sun Deyou. Studyon the Classification of Metamorphic Stage and the p-T-D Trajectory of Metamorphism in Chencai Group, Southwest Zhejiang Province[J]. Journal of Changchun University of Earth Sciences, 1994, 24(3):246-253.
[68] Xu X B, Li Y, Tang S, et al. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block:Constraints from Structural Analysis and 40Ar/39Ar Geochronology[J]. Journal of Asian Earth Sciences, 2015, 98(1):141-151.
[69] Yao J L, Shu L S, Cawood P A, et al. Delineating and Characterizing the Boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China[J]. Precambrian Research, 2016, 275:265-277.
[70] Charvet J, Shu L S, Faure M, et al. Structural Development of the Lower Paleozoic Belt of South China:Genesis of an Intracontinental Orogen[J]. Journal Asian Earth Sciences, 2010, 39(4):309-330.
[71] 李三忠, 李玺瑶, 赵淑娟, 等. 全球早古生代造山带:Ⅲ:华南陆内造山[J]. 吉林大学学报(地球科学版), 2016, 46(4):1005-1025. Li Sanzhong,Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic Orogens:Ⅲ:Intracontinental Orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1005-1025.
[72] Song M J, Shu L S, Santosh M. Late Early Paleozoic and Early Mesozoic Intracontinental Orogeny in the South China Craton:Geochronological and Geochemical Evidence[J]. Lithos,2015, 232:360-374.
[73] Wang Y J, Zhang A M, Fan W M, et al. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block:Geochronological and Geochemical Evidence[J]. Lithos, 2013, 160/161:37-54.
[74] Yu Y, Huang X L, He P L. I-Type Granitoids Associated with the Early Paleozoic Intracontinental Orogenic Collapse Along Pre-Existing Block Boundary in South China[J]. Lithos, 2016, 248/249/250/251:353-365.
[75] Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China:Tectonic Implications and the Need to Redefine Lithostratigraphic Units[J]. Gondwana Research, 2007, 12(1):166-183.
[76] 曾雯, 张利, 周汉文, 等. 华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约[J]. 科学通报, 2008, 53(3):335-344. Zeng Wen, Zhang Li, Zhou Hanwen, et al. Reconstruction of the Paleoproterozoic Basins of the Cathaysian Block in Caledonian:Constraints from the Zircon U-Pb Age, Hf Isotope and Trace Element[J]. Chinese Science Bulletin, 2008, 53(3):335-344.
[77] 于津海, 周新民, O'Reilly S Y, 等. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究[J]. 科学通报, 2005, 50(16):1758-1767. Yu Jinhai, Zhou Xinmin, O'Reilly S Y, et al. Formation Age and Protolith Properties of the Granulite Facies Metamorphic Rocks in the Eastern Section of Nanling U-Pb-Hf Isotopic Study of Zircon[J]. Chinese Science Bulletin, 2005, 50(16):1758-1767.
[78] 于津海, 楼法生, 王丽娟, 等. 赣东北弋阳早古生代麻粒岩的发现及其地质意义[J]. 科学通报, 2014, 59(35):3508-3516. Yu Jinhai, Lou Fasheng, Wang Lijuan, et al. Discovery of Early Paleozoic Granulite in Yiyang, Northeast Jiangxi and Its Geological Significance[J]. Chinese Science Bulletin, 2014, 59(35):3508-3516.
[79] 刘锐, 张利, 周汉文, 等. 闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用[J]. 岩石学报, 2008, 24(6):1205-1222. Liu Rui, Zhang Li, Zhou Hanwen, et al. Petrogenesis of the Caledonian Migmatites and Related Granites in Northwestern Fujian Province, South China:Syn-Deformational Crustal Anatexis[J]. Acta Petrologica Sinica, 2008, 24(6):1205-1222.
[80] 张芳荣, 舒良树, 王德滋, 等. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘, 2009, 16(1):248-260. Zhang Fangrong, Shu Liangshu, Wang Dezi, et al. Discussion on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China[J]. Earth Science Frontiers, 2009, 16(1):248-260.
[81] Xiang H, Zhang L, Zhou H W, et al. U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang:The Re-Sponse of the Cathaysia Block to Indosinian Orogenic Event[J]. Science China (Earth Sciences), 2008, 51(6):788-800.
[82] 汪建国, 余盛强, 胡艳华, 等. 江山绍兴结合带榴闪岩的发现及岩石学、年代学特征[J]. 中国地质, 2014, 41(4):1356-1363. Wang Jianguo, Yu Shengqiang, Hu Yanhua, et al. The Discovery, Petrology and Geochronology of the Retrograde Eclogite in Jiangshan-Shaoxing Suture Zone[J]. Geology in China, 2014, 41(4):1356-1363.
[83] 邢光福, 姜杨, 陈志洪, 等. 钦杭结合带首次发现加里东期榴闪岩[J]. 资源调查与环境, 2013, 34(4):封面二. Xing Guangfu, Jiang Yang, Chen Zhihong, et al. First Discovery of Caledonian Garnet Amphibolite in the Qin-Hang Belt[J]. Resource Investigation and Environment, 2013, 34(4):Inside Front Cover.
[84] 覃小锋, 王宗起, 王涛, 等. 桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约[J]. 地球学报, 2015, 36(3):283-292. Qin Xiaofeng, Wang Zongqi, Wang Tao, et al. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt[J]. Acta Geoscience Sinica, 2015, 36(3):283-292.
[85] Wong J, Sun M, Xing G F, et al. Zircon U-Pb and Hf Isotopic Study of Mesozoic Felsic Rocks from Eastern Zhejiang, South China:Geochemical Contrast Between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2011, 19(1):244-259.
[86] 王存智, 余明刚, 黄志忠, 等. 赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义[J]. 地质论评, 2016, 62(5):1185-1200. Wang Cunzhi, Yu Minggang, Huang Zhizhong, et al. Recognition and Significance of Neoproterozoic(ca.800 Ma) High-Mg Andesites in the NE Jiangxi Ophiolite Belt[J]. Geological Review, 2016, 62(5):1185-1200.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[3] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[4] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[5] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[6] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[7] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[8] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[9] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[10] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[11] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[12] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[13] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
[14] 赵院冬, 车继英, 吴大天, 许逢明, 赵君, 李士超. 小兴安岭西北部早—中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137.
[15] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071 -1084 .
[2] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105 -1120 .
[3] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221 -1230 .
[4] 张凤君, 刘哲华, 苏小四, 吕聪, 刘佳露. 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1212 -1220 .