吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 95-105.doi: 10.13278/j.cnki.jjuese.201701109

• 地质与资源 • 上一篇    下一篇

贵州关岭丙坝铜矿床地气微粒特征

曹建劲1,2, 李映葵1, 刘昶1, 袁雪玲1   

  1. 1. 中山大学地球科学与地质工程学院, 广州 510275;
    2. 广东省地质过程与矿床资源探查重点实验室, 广州 510275
  • 收稿日期:2015-12-22 出版日期:2017-01-26 发布日期:2017-01-26
  • 作者简介:曹建劲(1958-),男,教授,博士,博士生导师,主要从事应用地球化学和岩石地球化学方面的教学和研究工作,E-mail:eescjj@mail.sysu.edu.cn
  • 基金资助:
    国家高技术研究发展计划“863”项目(2008AA06Z101)

Research on Geogas Particles from Bingba Copper Deposit in Guanling County of Guizhou Province

Cao Jianjin1,2, Li Yingkui1, Liu Chang1, Yuan Xueling1   

  1. 1. School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong key Laboratory of Geological Process and Mineral Resources Exploration, Guangzhou 510275, China
  • Received:2015-12-22 Online:2017-01-26 Published:2017-01-26
  • Supported by:
    Supported bythe National High Technology Research and Development Program of China (863 Program) (2008AA06Z101)

摘要: 为了查明地气微粒特征与隐伏矿体的关系,对贵州关岭丙坝铜矿床进行地气微粒采样,并用透射电子显微镜进行分析。研究结果表明:地气微粒存在形式有微粒聚合体和单个微粒,以微粒聚合体为主。单个微粒形态各异,有球状、板状、立方状、椭球状、条状、不规则状等,粒度一般在几纳米到300 nm之间;微粒聚合体多呈链状、浑圆状、不规则状。微粒的元素组成与地下隐伏矿体具有较好的相关性,且发现较多微粒中含有高浓度的Fe、Mn、Pb、Zn等元素,这无疑对该矿区今后的地质找矿具有指导意义。此外,通过对比不同矿床的地气微粒特征,发现矿床类型不同,微粒的种类、成分、形态等特征有差异,但相同类型的矿床却具有较大相似性。矿床地气微粒特征与地下隐伏矿床具有较好相关性,在相似地质环境下形成的矿床微粒元素组成、大小大体上具有相似性,但其间的微粒组合、形态等仍会存在一定的差异性。因此,可以通过对隐伏金属矿床地气微粒特征的研究,建立不同矿床类型地气微粒特征模型。

关键词: 地气微粒, 隐伏矿体, 丙坝铜矿床, 透射电子显微镜

Abstract: To find out the relationship between the characteristic of geogas particles and concealed deposit, geogas particles have been sampled from Bingba copper deposit in Guanling County of Guizhou Province, and analyzed by transmission electron microscope. The results revealed that geogas particles are in the form of particle aggregations and individual particles, of which the former is dominant. The shapes of individual particles are mainly spherical, platy, cuboidal, ellipsoidal, strip shaped, and irregular, with a size generally ranging from several nanometers to 300 nm. The shapes of particle aggregations are mainly chain-shaped, rounded, and irregular. The elemental composition of geogas particles shows a good correlation with concealed metal ore bodies. High concentrations of Fe, Mn, Pb, and Zn are found in many geogas particles, which have certain significance for future mineral exploration. Moreover, by comparing the characteristics of geogas particles from different concealed metal mines the authors find that the types, elemental composition and morphology of geogas particles are different in different types of deposits, but with great similarities over the same type of deposit. There is good correlation between characteristics of geogas particles in deposit and deep concealed deposit. There is a great similarity in elemental composition and sizes of particles under similar geological environment, though there still exist some differences in the combination of particles and shape. Therefore, by analyzing the characteristics of geogas particles from concealed metal deposits, models of geogas particles characteristics from different deposit types can be established which is of great value for concealed deposit exploration.

Key words: geogas particles, concealed deposit, Bingba copper deposit, transmission electron microscope

中图分类号: 

  • P618.41
[1] Kristiansson K, Malmqvist L. A New Model Mecha-nism for the Transportation of Radon Through the Ground[C]//Society of Exploration Geophysics. Houston:Proceedings of Fiftieth Annual International Meeting, 1981, 46(4):462.
[2] Kristiansson K, Malmqvist L. Evidence for Nondi-ffusive Transport of 86222Rn in the Ground and a New Physical Model for the Transport[J]. Geophysics, 1982, 47(10):1444-1452.
[3] Malmqvist L, Kristiansson K. Experimental Evidence for an Ascending Microflow of Geogas in the Ground[J]. Earth and Planetary Science Letters, 1984, 70(2):407-416.
[4] Kristiansson K, Malmqvist L, Persson W. Geogas Prospecting:A New Tool in the Search for Concealed Mineralizations[J]. Endeavour, 1990, 14(1):28-33.
[5] 刘应汉,汪明启,赵恒川,等. 寻找隐伏矿的"地气"测量方法原理及应用前景[J]. 青海国土经略, 2006, 3:41-42. Liu Yinghan, Wang Mingqi, Zhao Hengchuan, et al. Searching for Geogas in Concealed Deposits:The Measurement Principle and the Application Prospect[J]. Management & Strategy of Qinghai Land & Resources, 2006, 3:41-42.
[6] 任春,孙长青,汤玉平,等. 油气勘探中壤气烃的采集与应用[J]. 物探与化探, 2010, 34(1):63-65. Ren Chun, Sun Changqing, Tang Yuping, et al. The Collection and Application of Soil Gas Hydrocarbon in Oil and Gas Exploration[J]. Geophysical and Geochemical Exploration, 2010, 34(1):63-65.
[7] 鲁人齐,王多义,刘亚伟,等. 川西新场气田地气测量试验[J]. 物探与化探, 2008, 32(6):678-681. Lu Renqi, Wang Duoyi, Liu Yawei, et al. Experimental Geogas Survey in the Xinchang Gas Field of Western Sichuan[J]. Geophysical and Geochemical Exploration, 2008, 32(6):678-681.
[8] 杨凤根,童纯菡. 地气测量在宣汉气田上的应用[J]. 矿物岩石, 1998, 18(3):99-105. Yang Fenggen, Tong Chunhan. Application of Geogas Prospecting in Xuanhan Gas Field[J]. Journal of Mineralogy and Petrology, 1998, 18(3):99-105.
[9] 刘应汉. 青海拉水峡铜镍矿纳米物质地球化学异常特征及找矿模型[J]. 地质与勘探, 2003, 39(2):11-15. Liu Yinghan. The Anomalous Characteristic and the Mode for Prospecting Ores of the Nanoscale Material Geochemical Measurement in Lashuixia Copper-Nickel Deposit in Qinghai[J]. Geology and Prospecting, 2003, 39(2):11-15.
[10] Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale Metals in Earthgas and Mobile Forms of Metals in Overburden in Wide-Spaced Regional Exploration for Giant Deposits in Overburden Terrains[J]. Journal of Geochemical Exploration, 1997, 58(1):63-72.
[11] Wang X Q, Xie X J, Ye S R. Concepts for Geoche-mical Gold Exploration Based on the Abundance and Distribution of Ultrafine Gold[J]. Journal of Geochemical Exploration, 1995, 55(1):93-101.
[12] 施俊法,吴传璧. 金属微粒迁移新机制及其意义综述[J]. 地质科技情报,1998,17(4):81-86. Shi Junfa, Wu Chuanbi. Overview of a New Mechanism of the Transport for the Metal Particulate and Its Implication[J]. Geological Science and Technology Information, 1998, 17(4):81-86.
[13] 施俊法,周平,唐金荣,等. 关于金属矿床深部找矿关键技术发展战略的思考[J]. 地质通报,2009, 28(2):198-207. Shi Junfa, Zhou Ping, Tang Jinrong, et al. Thoughts on Developing Strategy of Key Technologies Used for Deep Metallic Ore-Prospecting[J]. Geological Bulletin of China, 2009, 28(2):198-207.
[14] 汪明启. 国际勘查地球化学现状和发展趋势:第21届勘查地球化学国际会议介绍[J]. 地球科学进展,2005,20(4):477-478. Wang Mingqi. Exploration Geochemistry Updates and Possible Trends from the 21th International Geochemical Exploration Symposium[J]. Advances in Earth Science, 2005, 20(4):477-478.
[15] 汪明启,高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学,2007,36(4):391-399. Wang Mingqi, Gao Yuyan. Tracing Source of Geogas with Lead Isotopes:A Case Study in Jiaolongzhang Pb-Zn Deposit, Gansu Province[J]. Geochemica, 2007, 36(4):391-299.
[16] 周四春,刘晓辉,童纯菡,等. 地气测量技术及在隐伏矿找矿中的应用研究[J]. 地质学报,2014, 88(4):736-754. Zhou Sichun, Liu Xiaohui, Tong Chunhan, et al. Application Research of Geogas Survey in Prospecting Concealed Ore[J]. Acta Geologica Sinica, 2014, 88(4):736-754.
[17] 葛良全,沈松平. 隐伏断裂上方地气异常特征及其机理研究[J]. 成都理工学院学报, 1997, 24(3):29-35. Ge Liangquan, Shen Songping. The Character of Geogas Anomaly on Concealed Faults and Its Mechanism[J]. Journal of Chengdu University of Technology, 1997, 24(3):29-35.
[18] Wang G C, Liu C L, Wang J H, et al. The Use of Soil Mercury and Radon Gas Surveys to Assist the Detection of Concealed Faults in Fuzhou City, China[J]. Environmental Geology, 2006, 51(1):83-90.
[19] Toutain J P, Sortino F, Baubron J C, et al. Structure and CO2 Budget of Merapi Volcano During Inter-Eruptive Periods[J]. Bulletin of Volcanology, 2009, 71(7):815-826.
[20] Zhou X C, Du J G, Chen Z, et al. Geochemistry of Soil Gas in the Seismic Fault Zone Produced by the Wenchuan Ms 8.0 Earthquake, Southwestern China[J]. Geochemical Transactions, 2010, 11(5):5-10.
[21] Sj blom R, Hermansson H P, Åkerblom G. Geogas in Crystalline Bedrock and Its Potential Significance for Disposal of Nuclear Waste[C]//MRS Proceedings. Cambridge:Cambridge University Press, 1994, 353:477.
[22] Annunziatellis A, Ciotoli G, Lombardi S, et al. Short- and Long-Term Gas Hazard:The Release of Toxic Gases in the Alban Hills Volcanic Area (Central Italy)[J]. Journal of Geochemical Exploration, 2003, 77(2):93-108.
[23] 曹建劲. 地气微粒特征和元素含量结合探测隐伏矿床技术[J]. 金属矿山, 2009(2):1-4. Cao Jianjin. The Technique for Detecting Concealed Deposits by Combining Geogas Particles Characteristics with Element Concentrations[J]. Metal Mine, 2009(2):1-4.
[24] Cao J J, Hu R Z, Liang Z R, et al. TEM Observation of Geogas-Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 2009, 101(3):247-253.
[25] Wei X J, Cao J J, Holub R F, et al. TEM Study of Geogas-Transported Nanoparticles from the Fankou Lead-Zinc Deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 2013, 128:124-135.
[26] Cao J J, Liu C, Xiong Z H, et al. Particles Carried by Ascending Gas flow at the Tong Change Copper Mine, Guizhou Province, China[J]. Science China Earth Sciences, 2010, 53(11):1647-1654.
[27] 曹建劲,刘昶,张鹏,等. 云南会泽大黑山玄武岩铜矿床地气微粒特征[J]. 金属矿山, 2011(6):113-115. Cao Jianjin, Liu Chang, Zhang Peng, et al. The Characteristic of Geogas Particles from Daheishan Basalt Copper Deposit in Huize County of Yunnan[J]. Metal Mine, 2011(6):113-115.
[28] 刘昶,曹建劲,柯红玲. 滇东北永胜得铜矿床地气微粒特征[J]. 化工矿产地质, 2011, 33(4):201-207. Liu Chang, Cao Jianjin, Ke Hongling. Geogas Characteristic of Yongshengde Copper Ores in the Northeastern Yunnan, China[J]. Geology of Chemical Minerals, 2011, 33(4):201-207.
[29] Hu G, Cao J J, Hopke P K, et al. Study of Carbon-Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China[J]. Resource Geology, 2015, 65(1):13-26.
[30] Dai D L, Cao J J, Lai P X, et al. TEM Study on Particles Transported by Ascending Gas Flow in the Kaxiutata Iron Deposit, Inner Mongolia, North China[J]. Geochemistry:Exploration, Environment, Analysis, 2015, 15(4):255-271.
[31] 黄艳. 黔西南与玄武岩有关的铜矿及其表生成矿过程的实验研究[D].贵阳:中国科学院研究生院, 2006. Huang Yan. An Experimental Study on the Minerogenesis of the Copper Deposits Related to the Emeishan Basalt in the Southwestern Guizhou Province, China[D].Guiyang:Graduate University of Chinese Academy of Science, 2006.
[32] 刘昶,曹建劲,熊志华. 地气测量在贵州关岭丙坝铜矿床应用研究[J]. 矿床地质, 2010, 29(增刊1):641-642. Liu Chang, Cao Jianjin, Xiong Zhihua. The Application Research of Geogas Mearsurement in Guanling County of Guizhou Province[J]. Mineral Deposits, 2010, 29(Sup.1):641-642.
[33] 王富东,朱笑青,韩涛,等. 峨眉山玄武岩风化淋滤型铜矿成因认识[J]. 矿物学报, 2009, 29(增刊1):88-89. Wang Fudong, Zhu Xiaoqing, Han Tao, et al. The Formation Cause of Basalt Weathering Leaching Copper Deposit in Mount Emei[J]. Acta Mineralogica Sinica, 2009, 29(Sup.1):88-89.
[34] 陈文一,刘家仁,王中刚,等. 贵州峨眉山玄武岩喷发期的岩相古地理研究[J]. 古地理学报, 2003, 5(1):17-28. Chen Wenyi, Liu Jiaren, Wang Zhonggang, et al. Study on Lithofacies Palaeogeography During the Permian Emeishan Basalt Exploration in Guizhou Province[J]. Journal of Palaeogeography, 2003, 5(1):17-28.
[35] Cao J J, Li Y K, Jiang T, et al. Sulfer-Containing Particles Emitted by Concealed Sulfide Ore Deposits:An Unknown Source of Sulfer-Containing Particles in the Atmosphere[J]. Atmospheric Chemistry and Physics, 2015, 15(12):6959-6969.
[36] 严再飞,黄智龙,陈觅,等. 峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征[J]. 吉林大学学报(地球科学版),2010, 40(6):1311-1322. Yan Zaifei, Huang Zhilong, Chen Mi, et al. Two Distinct Mantle Sources for High-Ti Basalts in the Emeishan Overfall Basalt Province[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6):1311-1322.
[37] 夏昭德,姜常义,凌锦兰. 新疆笔架山早二叠世火山岩带岩石成因:来自岩石学、地球化学及同位素年代学的制约[J]. 吉林大学学报(地球科学版),2014,44(3):817-834. Xia Zhaode, Jiang Changyi, Ling Jinlan. Petrogenesis of Early Permian Bijiashan Volcanic Rocks in Beishan Area, Xinjiang, NW China:Evidence from Petrology, Geochemistry and Isotopic Geochronology[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):817-834.
[38] Macnamara J, Thode H G. The Isotopes of Xenon and Krypton in Pitchblende and the Spontaneous Fission of U238[J]. Physical Review, 1950, 80(3):471.
[39] Wetherill G W. Spontaneous Fission Yields from Ura-nium and Thorium[J]. Physical Review, 1953, 92(4):907.
[40] 赵建如,初凤友,金路,等. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版),2015, 45(6):1772-1780. Zhao Jianru, Chu Fengyou, Jin Lu, et al. Spatial Multi-Scale Variability of Heavy Metals in Surface Sediments of Western Pearl River Estuary[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1772-1780.
[1] 张作伦,曾庆栋,叶杰,贾长顺,李文涛. 草原覆盖区隐伏金属矿体定位预测--以大兴安岭中南段某铅锌矿点为例[J]. J4, 2007, 37(1): 38-0040.
[2] 吴国学,李守义,吕志刚,王永祥,汪振涌,崔敏. 团结沟金矿外围十三公里区隐伏矿体预测[J]. J4, 2006, 36(05): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!