吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1810-1820.doi: 10.13278/j.cnki.jjuese.20170137

• 地质工程与环境工程 • 上一篇    

地表灌溉对沉积含水层中碘迁移释放过程的影响

周海玲1,2, 苏春利1,2, 李俊霞1,2   

  1. 1. 中国地质大学环境学院, 武汉 430074;
    2. 中国地质大学生物地质与环境地质国家重点实验室, 武汉 430074
  • 收稿日期:2018-09-07 发布日期:2018-11-26
  • 通讯作者: 苏春利(1976-),女,副教授,博士,主要从事污染水文学方面的教学和科研工作,E-mail:chl.su@cug.edu.cn E-mail:chl.su@cug.edu.cn
  • 作者简介:周海玲(1991-),女,硕士研究生,主要从事地下水污染与防治方面的研究,E-mail:zhouhailing2015@163.com
  • 基金资助:
    国家自然科学基金项目(41502230);湖北省自然科学基金项目(2015CFB554)

Influence of Surface Irrigation Practices on Iodine Mobilization in Sedimentary Aquifers

Zhou Hailing1,2, Su Chunli1,2, Li Junxia1,2   

  1. 1. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
    2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
  • Received:2018-09-07 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41502230) and Natural Science Foundation of Hubei Pro-vince (2015CFB554)

摘要: 灌溉等人为活动会造成外源物质的输入,如硝酸盐、有机质等,从而引起浅层地下水环境发生周期性波动。为研究农业灌溉对沉积含水层中碘迁移富集过程的影响,选取代表性富碘沉积物,通过室内实验模拟了灌溉活动外源物质输入条件下,盆地地下水系统中碘迁移释放的(生物)地球化学过程。实验结果表明:厌氧条件下,外源有机质输入可促使微生物利用有机质作为电子供体,还原固相铁矿物相,进而造成搭载于铁氧化物/氢氧化物表面的碘释放,以碘离子形式在地下水中富集;而在NO3-输入情况下,微生物会优先利用NO3-为电子受体,至硝酸盐被全部消耗后,Fe(Ⅲ)可进一步被还原为Fe(Ⅱ)。研究结果表明,人为活动造成浅表环境外源物质的输入可直接影响浅层地下水中碘的迁移释放过程。伊利石黏土矿物吸附的铁氧化物矿物相可能为浅层环境中碘的主要搭载介质,微生物作用下,铁氧化物/氢氧化物的还原溶解是高碘地下水形成的主控因素。

关键词: 碘, 奥奈达希瓦氏菌MR-1, 硝酸盐, 有机质, 微生物

Abstract: Surface irrigation and other agricultural activities cause the input of exogenous materials, such as nitrate, organic matter and so on, which will lead to seasonal fluctuations in the shallow sedimentary aquifers. In this study, the iodine-rich sediments were selected to explore the influence of irrigation practice on iodine mobilization and accumulation in shallow groundwater system. The results show that under the anaerobic conditions, the reduction of iron mineral phase will be promoted by microbes using organic matter as electron donor because of the input of exogenous organic matter. This process can lead to iodine release into the liquid phase from iron oxide/hydroxide surface, mainly in the form of iodine ion in groundwater. With extra NO3- input, Fe(Ⅲ) will be reduced to Fe(Ⅱ) until nitrate is consumed completely by microbes using NO3- as electron acceptor. The input of exogenous substances by human activities is favorable for the iodine release from solid into shallow groundwater. Iron phase adsorbed by Illite may be the main carrier of solid iodine in shallow aquifers. Under the action of microorganisms, the reductive dissolution of solid Fe is the main controlling factor for release of solid iodine, thereby forming high iodine groundwater in shallow aquifers.

Key words: iodine, Shewanella oneidensis MR-1, nitrate, organic matter, microbial

中图分类号: 

  • P641.69
[1] 陈祖培. 中国控制碘缺乏病的对策[M]. 天津:天津科学技术出版社, 2002. Chen Zupei. Tactics of IDD Control in China[M]. Tianjin:Science & Technology Press, 2002.
[2] Swewart A G, Carter J, Parker A, et al. The Illusion of Environmental Iodine Deficiency[J]. Environmental Geochemistry and Health, 2003, 25(1):165-170.
[3] Andersen S, Iversen F, Terpling S, et al. Iodine Deficiency Influences Thyroid Autoimmunity in Old Age:A Comparative Population-Based Study[J]. Maturitas, 2012, 71:39-43.
[4] Laurberg P, Cerqueira C, Ovesen L, et al. Iodine Intake as a Determinant of Thyroid Disorders in Populations[J]. Best Pract Res Clin Endocrinol Metab, 2010, 24:13-27.
[5] 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5):8-15. Xu Fen, Ma Teng, Shi Liu, et al. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2012, 39(5):8-15.
[6] Andersen S,Bruun N H, Pedersen K M, et al. Biologic Variation is Important for Interpretation of Thyroid Function Tests[J]. Thyroid, 2003, 13(11):1069-1078.
[7] 申红梅, 张树彬, 苏晓辉, 等. 全国高碘水地区地理分布及高碘地区水碘等值线研究[J]. 中国地方病学杂志, 2007, 26(6):294-296. Shen Hongmei, Zhang Shubin, Su Xiaohui, et al. The Distribution of High Iodine Water and the Research Isogram of High Iodine Water[J]. Chinese Journal of Endemiology, 2007, 26(6):294-296.
[8] Andersen S, Guan H, Teng W. Speciation of Iodine in High Iodine Groundwater in China Associated with Goiter and Hypothyroidism[J]. Biological Trace Element Research, 2009, 128(2):95-103.
[9] Shimamoto Y S, Takahashi Y, Terada Y. Formation of Organic Iodine Supplied as Iodine in a Soil-Water System in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6):2086-2092.
[10] 李俊霞. 大同盆地高碘地下水系统地球化学研究[D]. 武汉:中国地质大学, 2014. Li Junxia. Geochemistry of High Iodine Groundwater System of Datong Basin, Northern China[D]. Wuhan:China University of Geosciences, 2014.
[11] 徐清, 刘晓端, 汤奇峰, 等. 山西晋中地区地下水高碘的地球化学特征研究[J]. 中国地质, 2010, 37(3):809-815. Xu Qing, Liu Xiaoduan, Tang Qifeng, et al. High Iodine Geochemical Characteristics of the Groundwater in Central Shanxi Province[J]. Geology in China, 2010, 37(3):809-815.
[12] 水源性高碘地区和地方性高碘甲状腺肿病区的划定GB/T19380-2003[S]. 北京:中国标准出版社, 2004. Datermination and Classification of the Areas of High Water Iodine and the Endemic Areas of Iodine Excess Goiter GB/T19380-2003[S]. Beijing:Standard Press of China, 2004.
[13] Jia Y F, Guo H M, Xi B D, et al. Sources of Groundwater Salinity and Potential Impact on Arsenic Mobility in the Western Hetao Basin, Inner Mongolia[J]. Science of the Total Environment, 2017, 601/602:691-702.
[14] Guo H M, Wen D G, Liu Z Y, et al. AReview of High Arsenic Groundwater in Mainland and Taiwan, China:Distribution, Characteristics and Geochemical Processes[J]. Applied Geochemistry, 2014,41(1):196-217.
[15] Wen D G, Zhang F C, Zhang E Y, et al. Arsenic,Fluoride and Iodide in Groundwater of China[J]. Journal Geochemical Exploration, 2013, 135:1-21.
[16] 张二勇, 张福存, 钱永, 等. 中国典型地区高碘地下水分布特征及启示[J]. 中国地质, 2010, 37(3):797-802. Zhang Eryong, Zhang Fucun, Qian Yong, et al. The Distribution of High Iodine Groundwater in Typical Areas of China and Its Inspiration[J]. Geology in China, 2010, 37(3):797-802.
[17] Hu Q, Zhao P, Moran J E, et al. Sorption and Transport of Iodine Species in Sediments from the Savannah River and Hanford Sites[J]. J Contam Hdrol, 2005, 78:185-205.
[18] Yamaguchi N, Nakano M, Takamatsu R, et al. InorganicIodine Incorporation into Soil Organic Matter:Evidence from Iodine K-Edge X-Ray Absorption Near-Edge Structure[J]. J Environ Radioact, 2010, 101:451-457.
[19] Qtosaka S, Schwehr K A, Kaplan D I, et al. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site[J]. Sci Total Environ, 2011, 409:3857-3865.
[20] Li J X, Wang Y X, Guo W, et al. Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics[J]. Science of the Total Environment, 2014, 468/469:738-745.
[21] Pedersen H D, Postma D, Jakobsen R. Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides[J]. Geochim, Cosmochim, Acta, 2006, 70(16):4116-4129.
[22] Dixit S, Hering J G. Comparison of Arsenic(V) and Arsenic(Ⅱ) Sorption onto Iron Oxide Minerals:Implications for Arsenic Mobility[J]. Environ Sci Technol, 2003, 37(18):4182-4189.
[23] Kneebone P E,O'Day P A, Jones N, et al. Depo-sition and Fate of Arsenic in Iron and Arensic-Enriched Reservoir Sediments[J]. Environ Sci Technol, 2002, 36(3):381-386.
[24] André B, Francis G, Philippe B, et al. Decoupling of Arsenic and Iron Release from Ferrihydrite Suspension Under Reducing Conditions:A Biogeochemical Model[J]. Geochemical Transactions, 2007, 8:1-18.
[25] 王荣元. 大洋水和九龙江口沉积物中碘的地球化学[D]. 厦门:厦门大学, 2014. Wang Rongyuan. The Geochemistry of Iodine in Ocean Water and the Jiujiang River Estuarine Sediment[D]. Xiamen:Xiamen University, 2014.
[26] Dowdle P R, Laverman A M, Oremland R S. Bac-terial Dissimilatory Reduction of Arsenic(V) to Arsenic(Ⅲ) in Anoxic Sediments[J]. Applied and Environmental Microbiology, 1996, 62(5):1664-1669.
[27] Gibney B P, Nusslein K. Arsenic Sequestration by Nitrate Respiring Microbial Communities in Urban Lake Sediments[J]. Chemosphere, 2007, 70(2):329-336.
[28] Sun W J, Sierra-Alvarez R, Milner L, et al. Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments[J]. Environmental Science & Technology, 2009, 43(17):6585-6591.
[29] Radlinger G, Heumann K G. Transformation of Iodine in Natural and Wastewater Systems by Fixation on Humic Substances[J]. Environmental Science & Technology, 2000, 34:3932-3936.
[30] Eusterhues K, Wanger F E, Haeusler W, et al. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-Ray Diffraction and Mossbauer Spectroscopy[J]. Environmental Science & Technology, 2008, 42:7891-7897.
[31] 邓娅敏. 河套盆地西部高砷地下水系统中的地球化学过程研究[D]. 武汉:中国地质大学, 2008. Deng Yamin. Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin[D]. Wuhan:China University of Geosciences, 2008.
[32] Li J X, Wang Y X, Xie X J. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China[J]. Science of the Total Environment, 2016, 544:158-167.
[33] 董维红, 孟莹, 王雨山, 等. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2):542-553. Dong Weihong, Meng Ying, Wang Yushan, et al. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin, Sanjiang Plain[J]. Journal of Jinlin University (Earth Science Edition), 2017, 47(2):542-553.
[34] Li J X, Wang Y X, Xie X J, et al. Effects of Water-Sediment Interaction and Irrigation Practices on Iodine Enrichment in Shallow Groundwater[J]. Journal of Hydrology, 2016, 543:293-304.
[35] Amachi S, Kamagata Y, Kanagawa T, et al. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments[J]. Appl Environ Microbiol, 2001, 67(6):2718-2722.
[36] Duan M, Xie Z, Wang Y, et al. Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments Under Different Conditions of Microbial Activity and Carbon Source[J]. Environmental Geology, 2009, 57:997-1003.
[37] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1):178-184. Zhang Liping, Xie Xianjun, Li Junxia, et al. Spatial Variation, Speciation and Enrichment of Arsenic in Groundwater from the Datong Basin, Northern China[J]. Geological Science and Technology Information, 2014, 33(1):178-184.
[38] Li J X, Xie X J, Su C L. Hierarchical Cluster Analysis of Arsenic and Fluoride Enrichments in Groundwater from the Datong Basin, Northern China[J]. J Geochem Explor, 2012, 118:77-89.
[39] 周海玲, 苏春利, 李俊霞,等. 大同盆地沉积物REE分布特征及其对碘富集的指示[J].地球科学, 2017, 42(2):298-306. Zhou Hailing, Su Chunli, Li Junxia, et al. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment[J]. Earth Science, 2017, 42(2):298-306.
[40] Lovley D R, Phillips E J P. Organic Matter Minera-lization with Reduction of Ferric Iron in Anaerobic Sediments[J]. Applied and Environmental Microbiology, 1986, 51(4):683-689.
[41] Lovley D R, Phillips E J P. Rapid Assay for Mic-robially Reducible Ferric Iron in Aquatic Sediments[J]. Applied and Environmental Microbiology, 1987, 53(7):1536-1540.
[42] Seabaugh J L, Dong H L, Kukkadapu P K, et al. Microbial Reduction of Fe(Ⅲ) in the Fithian and Muloorian Illites:Contrasting Extents and Rates of Bioreduction[J]. Clays and Clay Minerals, 2006, 54(1):67-79.
[43] Amstaetter K, Borch T, Larese-Casanova P. Redox Transformation of Arsenic by Fe(Ⅱ)-Activated Goethite (Alpha-FeOOH)[J]. Environ Sci Technol, 2010, 44(1):102-108.
[44] 陈立乔, 魏复盛. 中国土壤中溴、碘的背景含量[J]. 干旱环境监测, 1991, 5(2):65-69. Chen Liqiao, Wei Fusheng. The Background Value of Bromon and Iodine in China Soils[J]. Aird Environmental Monitoring, 1991, 5(2):65-69.
[45] Johnson C C. Database of the Iodine Content of Soils Populated with Data from Published Literature[EB/OL].[2016-07-06] . http://nora.nerc.ac.uk/id/eprint/10725.
[1] 杨晓平, 张文龙, 汪岩, 谭红艳. 漠河盆地北部中侏罗统烃源岩有机质评价[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1635-1644.
[2] 张凤君, 刘哲华, 苏小四, 吕聪, 刘佳露. 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1212-1220.
[3] 张海燕, 彭彤彤, 温玉娟, 高思萌, 杨悦锁. 五大连池药泉山矿泉微生物多样性及其地质和环境控制特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 815-826.
[4] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[5] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[6] 娄军芳, 汤洁, 宋扬. 单室无膜微生物电解池中阴极生物膜的电活性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1247-1254.
[7] 周刚, 郑荣才, 赵罡, 文华国, 温龙斌. 川西北甘溪地区吉维特阶核形石特征、成因及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 405-417.
[8] 李玉梅, 罗明奇, 潘国勇, 陶千冶. 离心操作对BIOLOG法测定微生物群落功能多样性的影响[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1198-1204.
[9] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[10] 苏小四, 孟祥菲, 张文静, 石旭飞, 何海洋. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015, 45(2): 573-583.
[11] 薛海涛, 田善思, 卢双舫, 刘敏, 王伟明, 王民. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60.
[12] 宋志伟, 王秋旭, 宁婷婷, 任南琪, 李立欣. 微生物絮凝剂投加方式对好氧颗粒污泥性能的影响[J]. 吉林大学学报(地球科学版), 2015, 45(1): 247-254.
[13] 柳蓉, 杨小红,董清水,刘冬青, 林斌,徐银波,张超. 罗子沟盆地有机质热演化对砂岩物性的改造作用[J]. 吉林大学学报(地球科学版), 2014, 44(2): 460-468.
[14] 张家明,徐则民. 马卡山不同植被群落下非饱和带大孔隙流路径示踪试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1922-1935.
[15] 赵晓波,谢雪,李莹,马臻,李绪谦,樊凯. 不同Eh条件下弱透水层中硝酸盐截留能力[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1603-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!