吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 597-605.doi: 10.13278/j.cnki.jjuese.201702303

• 地球探测与信息技术 • 上一篇    下一篇

有限长导线源频率测深有限内存拟牛顿一维反演

翁爱华1, 刘佳音1, 贾定宇2, 杨悦1, 李建平1, 李亚彬1, 赵祥阳1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000
  • 收稿日期:2016-07-07 出版日期:2017-03-26 发布日期:2017-03-26
  • 通讯作者: 刘佳音(1990),女,硕士研究生,主要从事可控源电磁法勘探理论研究,E-mail:928580651@qq.com E-mail:928580651@qq.com
  • 作者简介:翁爱华(1969),男,教授,博士生导师,主要从事电磁法勘探方法技术、正反演理论与应用研究,E-mail:wengah@jlu.edu.cn
  • 基金资助:
    国家重大科研设备仪器开发专项(2011YQ05006010)

1-D Inversion for Controlled Source Electromagnetic Sounding Using Limited Memory Quasi-Newton Method

Weng Aihua1, Liu Jiayin1, Jia Dingyu2, Yang Yue1, Li Jianping1, Li Yabin1, Zhao Xiangyang1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Instite of Geophysical and Geochemical Exploration CAGS, Langfang 065000, Hebei, China
  • Received:2016-07-07 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National Key Scientific Instrument and Equipment Development Project of China (2011YQ05006010)

摘要: 本文采用有限内存拟牛顿法实现有限长导线源频率测深阻抗响应数据的一维反演。水平层状介质有限长导线源阻抗频率响应由基于虚界面法获得的地表水平正交电场和磁场计算得到;一维反演优化问题的求解利用有限内存拟牛顿法,结合光滑模型约束,直接对阻抗的频率响应数据进行反演。在反演过程中,正则化参数的调整采用目标函数自适应技术。反演模型剖分为多层,各层厚度自地表按比例增加。反演从均匀半空间开始,终止条件为目标函数相对变化小于10-4。分别对理论模型和实际数据进行了反演模拟。为考察反演的稳定性,还对理论数据添加10%随机噪声后进行了反演。数值计算结果表明:有限内存拟牛顿方法可以用于有限长导线源频率测深阻抗频率响应的反演;该反演方法对初始模型的依赖性弱,从均匀半空间模型出发基本可以恢复到真实模型;反演初期收敛较快,后期收敛速度变慢,反演结束一般需要迭代40次左右。噪声数据反演结果表明,随机噪声对反演结果影响不大,说明有限内存拟牛顿法具有较好的抗干扰能力。本文研究成果给出了可控源电磁数据反演的一种新方法;同时,利用本文的研究成果,可以为二维或三维反演建立合适的初始模型。

关键词: 电磁测深, 有限长导线源, 有限内存拟牛顿法, 一维反演, 自适应正则化

Abstract: This paper uses limited memory quasi-Newton method to solve 1-D inversion for impedance response of long wire source frequency sounding. Impedance response of a long wire source in horizontal layered earth model is calculated from the ground level orthogonal electromagnetic fields, and the fields are obtained by the virtual interface method. To solve optimization problems of one dimensional inversion, limited memory quasi-Newton method is adopted. Furthermore, it uses smoothness constrains for model and inverses impedance response directly. Adaptive method of target function is used for adjusting regularization parameter in the process of inversion. The inversion model is divided into many layers that scale up the thickness. It's inversed from homogeneous half-space model until the fitting error is less than 10-4.We inverse theoretical model and actual data respectively, and then the data with 10% random noise are tested in order to investigate the stability. The numerical results show that the method of limited memory quasi-Newton is feasible for 1-D inversion for impedance response of long wire source frequency sounding; The method has little dependence on initial model, and inversion from homogeneous half-space model can still restore the true model; The objective function converges quickly at first and the speed slows down gradually later, and it takes about 40 iterations generally; The inversion results of noise data show that random noise has little effect, it also demonstrates the limited memory quasi-Newton method has certain anti-interference ability. This paper presents a new inversion method for controlled source electromagnetic data, meanwhile, the results can provide initial model for 2-D and 3-D inversion.

Key words: electromagnetic sounding, long wire source, limited memory quasi-Newton method, 1-D inversion, adaptive regularization

中图分类号: 

  • P631.3
[1] 何继善. 可控源音频大地电磁法[M]. 长沙:中南工业大学出版社,1990. He Jishan. Controlled Source Audio-Frequency Magnetotellurics[M]. Changsha:Central South University of Techology Press,1990.
[2] 尚通晓,李桐林,关艺晓,等.CSAMT一维全区反演[J].吉林大学学报(地球科学版),2007,37(增刊):24-26. Shang Tongxiao, Li Tonglin, Guan Yixiao,et al. Full-Region Inversion of 1-D CSAMT[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(Sup.):24-26.
[3] 刘颖,刘予国,柳建新,等. 海洋可控源电磁场的一维反演[J]. 中国有色金属学报,2013,23(9):2551-2556. Liu Ying, Liu Yuguo, Liu Jianxin, et al. One-Dimentional Inversion of Marine Controlled-Source Eletromagnetic Fields[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2551-2556.
[4] 何梅兴,胡祥云,陈玉萍,等. CSAMT奥克姆一维反演的应用[J]. 工程地球物理学报,2008,5(4):439-443. He Meixing, Hu Xiangyun, Chen Yuping, et al. Application of 1D Occam's Inversion to CSAMT[J]. Chinese Journal of Engineering Geophysics, 2008, 5(4):439-443.
[5] 汤井田,张林成,肖晓. 基于频点CSAMT一维最小构造反演[J]. 物探化探计算技术,2011,33(6):577-582. Tang Jingtian, Zhang Lincheng, Xiao Xiao. One Dimension CSAMT Minimum Structure Inversion Based on the Frequency[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011, 33(6):577-582.
[6] 王堃鹏,曹尡,高妍,等. CSAMT自适应正则化一维全资料反演[J]. 物探化探计算技术,2013,35(5):530-533. Wang Kunpeng, Cao Hun, Gao Yan, et al. Adaptive Regularized Inversion of 1-D Full CSAMT Data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(5):530-533.
[7] 陈小斌,赵国泽,唐吉,等. 大地电磁自适应正则化反演算法[J]. 地球物理学报,2005,48(4):937-946. Chen Xiaobin, Zhao Guoze, Tang Ji,et al. An Adaptive Regularized Algorithm for Magnetotelluric Data[J]. Chinese Journal of Geophysics, 2005, 48(4):937-946.
[8] Nocedal J. Updating Quasi-Newton Matrices with Li-mited Storage[J]. Mathematics of Computation, 1980, 35:773-782.
[9] Liu D C, Nocedal J. On the Limited Memory BFGS Methods for Large Scale Optimization[J]. Mathematical Programming, 1989, 45(1/2/3):503-528.
[10] 刘利. 大规模有限内存方法的探究[D]. 南京:南京理工大学,2009. Liu Li.Studies on the Large Scale Limited Memory Method[D]. Nanjing:Nanjing University of Science and Technology, 2009.
[11] 韩波,胡祥云,何展翔,等. 大地电磁反演方法的数学分类[J]. 石油地球物理勘探,2012,47(1):177-187. Han Bo, Hu Xiangyun, He Zhanxiang, et al. The Mathematical Classification of Magnetotelluric Inversion Method[J]. Oil Geophysical Prospecting, 2012, 47(1):177-187.
[12] Newman G A, Boggs P T. Solution Accelerators for Large-Scale Three-Dimensional Electromagnetic Inverse Problems[J]. Inverse Problems, 2004, 20(6):151-170.
[13] Haber E. Quasi-Newton Methods for Large-Scale Ele-ctromagnetic Inverse Problems[J]. Inverse Problems, 2005, 21(1):305-323.
[14] Avdeev D B, Avdeeva A D. 3D Magnetotelluric Inver-sion Using a Limited-Memory Quasi-Newton Optimization[J]. Geophysics, 2009, 74(3):45-57.
[15] 翁爱华,李大俊,李亚斌,等. 数据类型对三维地面可控源电磁勘探效果的影响[J]. 地球物理学报,2015,58(2):697-708. Weng Aihua, Li Dajun, Li Yabin, et al. Selection of Parameter Types in Controlled Source Electromagnetic Method[J]. Chinese Journal of Geophysics, 2015, 58(2):697-708.
[16] Avdeeva A, Avdeev D. A Limited-Memory Quasi-Newton Inversion for 1D Magnetotellurics[J]. Geophysics, 2006, 71(5):G191-G196.
[17] 翁爱华,刘云鹤,贾定宇,等. 初始背景模型对三维可控源反演的影响[C]//第十届中国国际地球电磁学术讨论会论文集. 南昌:中国地球物理学会,2011:223-226. Weng Aihua, Liu Yunhe, Jia Dingyu, et al. Effect of Initial Model on CSEM Inversion[C]//The 10th China International Geo-Electromagnetic Workshop. Nanchang:Chinese Geophysical Society, 2011:223-226.
[18] 叶涛,陈小斌,严良俊. 大地电磁资料精细处理和二维反演解释技术研究:三:构建二维反演初始模型的印模法[J]. 地球物理学报,2013,56(10):3596-3606. Ye Tao, Chen Xiaobin, Yan Liangjun. Refined Techniques for Data Processing and Two-Dimensional Inversion in Magnetotelluric:Ⅲ:Using the Impressing Method to Construct Starting Model of 2D Magnetotelluric Inversion[J]. Chinese Journal of Geophysics, 2013, 56(10):3596-3606.
[19] 陈孝雄,王友胜. 利用初始模型提高MT反演分辨率[J]. 江汉石油科技,2006,16(4):19-22. Chen Xiaoxiong, Wang Yousheng.Constructing Reasonable Starting Model to Improve the Resolution of MT Inversion[J]. Jianghan Petroleum Science and Tchnology, 2006, 16(4):19-22.
[20] Das U. A Reformalism for Computing Frequency-and-Time-Domain EM Responses of a Buried, Finite-Loop[C]//Annual Meeting Abstracts. Houston:SEG, 1995:811-814.
[21] Das U, Efficient H A. Computation of Apparent Resistivity Curves for Depth Profiling of a Layered Earth[J]. Geophysics, 1995, 60(6):1691-1697.
[22] 刘云鹤. 三维可控源电磁法非线性共轭梯度反演研究[D].长春:吉林大学,2011. Liu Yunhe. Research on 3-D Controlled Source Electromagnetic Method Inversion Using Nonlinear Conjugate Gradients[D].Changchun:Jilin University, 2011.
[23] 翁爱华,刘云鹤,贾定宇,等. 基于电场不连续边界条件的层状介质电磁格林函数计算[J]. 吉林大学学报(地球科学版),2013,43(2):603-609. Weng Aihua, Liu Yunhe, Jia Dingyu, et al. Compute Green's Function from Discontinuity of Tangential Electrical Fields Inside Source Contained Boundary[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):603-609.
[24] 贾定宇. 基于L-BFGS方法的水平电偶极一维反演[D]. 长春:吉林大学,2012. Jia Dingyu. Inversing Horizontal Electromagnetic Dipole Databy L-BFGS Method[D]. Changchun:Jilin University, 2012.
[25] 贾定宇,翁爱华,刘云鹤,等. 海洋环境中水平电偶极子电磁场特征分析[J]. 地球物理学进展,2013,28(1):517-514. Jia Dingyu, Weng Aihua, Liu Yunhe, et al. Propagation of Electromagnetic Fields from a Horizontal Electrical Dipole Buried in Ocean[J]. Progress in Geophysics, 2013, 28(1):517-514.
[26] Anderson W L. Computer Program Numerical Inte-gration of Related Hankel Transforms of Orders 0 and 1 by Adaptive Digital Filtering[J]. Geophysics, 1979, 44(7):1287-1305.
[27] Chave A D. Numerical Integration of Related Hankel Transforms by Quadrature and Continued Fraction Expansion[J]. Geophysics, 1983, 48(12):1671-1686.
[28] 翁爱华,王雪秋. 利用数值积分提高一维模型电偶源电磁测深响应计算精度[J]. 西北地震学报,2003,25(3):193-197. Weng Aihua, Wang Xueqiu. Utilizing Direct Integration to Enhance Calculation Accuracy of 1D Electromagnetic Response for Current Dipole Source[J]. Northwestern Seismological Journal, 2003, 25(3):193-197.
[29] 李廷锋. 求解大规模无约束优化问题的修正L-BFGS方法[D]. 开封:河南大学,2008. Li Tingfeng. Modified L-BFGS Methods for Large-Scale Unconstrained Optimization[D]. Kaifeng:Henan University, 2008.
[30] 张舒婷,于波. 有限极大极小问题的拟牛顿法[J]. 吉林大学学报(理学版),2006,44(3):367-369. Zhang Shuting, Yu Bo. Solution of Finite Minimax Problems via Quasi-Newton Method[J]. Journal of Jilin University (Science Edition), 2006, 44(3):367-369.
[1] 韩松, 刘国兴, 韩江涛. 华南地区进贤-柘荣剖面深部电性结构[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1837-1846.
[2] 李桐林, 张镕哲, 朴英哲. 大地电磁测深与地震初至波走时交叉梯度反演[J]. 吉林大学学报(地球科学版), 2015, 45(3): 952-961.
[3] 朴英哲,李桐林,刘永亮. 在大地电磁二维Occam反演中求取拉格朗日乘子方法改进[J]. 吉林大学学报(地球科学版), 2014, 44(2): 660-667.
[4] 张成范, 翁爱华, 孙世栋, 董瑞春. 计算矩形大定源回线瞬变电磁测深全区视电阻率[J]. J4, 2009, 39(4): 755-758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!