吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 517-524.doi: 10.13278/j.cnki.jjuese.20170269

• 深部地质地球物理 • 上一篇    下一篇

东海陆架盆地构造划分的高精度重磁解释技术

姚刚1, 董向欣2, 李丽丽2, 马国庆2, 孟令顺2   

  1. 1. 中海石油(中国)有限公司上海分公司, 上海 200030;
    2. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-20 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 李丽丽(1983-),女,副教授,博士,主要从事位场与地震数据处理及解释方面的研究,E-mail:lilili@jlu.edu.cn E-mail:lilili@jlu.edu.cn
  • 作者简介:姚刚(1982-),男,工程师,主要从事重磁震综合解释方面的研究,E-mail:yaogang2@cnooc.com.cn
  • 基金资助:
    国家自然科学基金项目(41604098);国家油气重大专项(2016ZX05027-002-003);国家重点研发计划项目(2017YFC0602203,2017YFC0601606)

High-Precision Gravity and Magnetic Interpretation Technique in Tectonic Division of East China Sea Shelf Basin

Yao Gang1, Dong Xiangxin2, Li Lili2, Ma Guoqing2, Meng Lingshun2   

  1. 1. Shanghai Branch of China National Offshore Oil Corporation Limited, Shanghai 200030, China;
    2. College of GeoEexploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-20 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41604098), National Oil and Gas Major Sub Project (2016ZX05027-002-003) and National Key Research and Development Program of China (2017YFC0602203, 2017YFC0601606)

摘要: 本文利用面积广、勘探深度大的重磁数据通过增强型局部相位边界识别方法和优化欧拉反褶积法获得东海陆架盆地的构造特征,为油气勘探提供基础资料。增强型局部相位边界识别法是重磁数据一阶和二阶水平导数的比值函数,能有效地均衡不同深度地质体的边界响应,从而同时显示不同深度构造的边界,提高对较深层构造的分辨率;优化欧拉反褶积法有效地降低了背景异常的干扰,从而可获得更加准确的构造反演结果。理论模型研究表明,增强型局部相位边界识别法可更加准确和清晰地划分边界信息,优化欧拉反褶积法可获得更加准确和收敛的反演结果。综合利用增强型局部相位边界识别和优化欧拉反褶积法对东海陆架断裂构造分布进行划分,获得了分析区域构造背景和评估油气潜力的基础资料。

关键词: 东海盆地, 局部相位, 欧拉反褶积, 构造特征, 油气勘探

Abstract: Using the gravity and magnetic data with wide area and deep exploration depth, we use enhanced local phase boundary identification and optimization Euler deconvolution to get the structural distribution of the East China Sea shelf basin. The enhanced local phase boundary identification method is the ratio of function data of the first order and the second order horizontal derivatives, which can effectively balance the different depth of the geological body boundary response, and improve the resolution of the deep structure; the optimization of Euler deconvolution method can effectively reduce the interference of background anomaly to result in more accurate inversion results. The theoretical model shows that the enhanced local phase boundary identification method can be more accurate and clear, the optimized inversion results of Euler deconvolution method can be more accurate and convergent. The comprehensive use of enhanced local phase boundary identification and optimization Euler deconvolution method can accurately divide the distribution of the East China Sea continental shelf fault structure, which has important reference value for guiding regional oil and gas exploration.

Key words: East China Sea basin, local phase, Euler deconvolution, structure feature, oil and gas exploratio

中图分类号: 

  • P59
[1] Cooper G R J, Cowan D R. Enhancing Potential Field Data Using Filters Based on the Local Phase[J]. Computers & Geosciences, 2006, 32(1):1585-1591.
[2] Cooper G R J, Cowan D R. Edge Enhancement of Potential-Field Data Using Normalized Statistics[J]. Geophysics, 2008, 73(3):H1-H4.
[3] Ma G. EdgeDetection of Potential Field Data Using Improved Local Phase Filter[J]. Exploration Geophysics, 2013, 44(1):36-41.
[4] Miller H G, Singh V. Potential Field Tilt:A New Concept for Location of Potential Field Sources[J]. Journal of Applied Geophysics, 1994, 32:213-217.
[5] Roest W R, Verhoef J, Pilkington M. Magnetic Interpretation Using the 3-D Analytic Signal[J]. Geophysics, 1992, 57:116-125.
[6] Wijns C, Perez C, Kowalczyk P. Theta Map:Edge Detection in Magnetic Data[J]. Geophysics, 2005, 70(4):L39-L43.
[7] Thompson D T. EULDPH:A New Technique for Making Computer:Assisted Depth Estimates from Magnetic Data[J]. Geophysics, 1982, 47(1):31-37.
[8] Reid A N, Allsop J M, Granser H, et al. Magnetic Interpretation in Three Dimensions Using Euler Deconvolution[J]. Geophysics, 1990, 55(1):80-91.
[9] 刘申叔,李上卿.东海油气地球物理勘探[M].北京:地质出版社,2001. Liu Shenshu, Li Shangqing. Geophysical Exploration of Oil and Gas in the East China Sea[M]. Beijing:Geological Publishing House, 2001.
[10] 骆满生,卢隆桥,贾建,等.中国中生代沉积盆地演化[J].地球科学:中国地质大学学报,2014,39(8):954-976. Luo Mansheng, Lu Longqiao, Jia Jian, et al. Evolution of Sedimentary Basins in China During Mesozoic[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(8):954-976.
[11] 张岳桥,徐先兵,贾东,等.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]地学前缘,2009,16(1):234-247. Zhang Yueqiao, Xu Xianbing, Jia Dong, et al. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China During the Early Mesozoic[J]. Earth Science Frontiers, 2009, 16(1):234-247.
[12] 李益龙,周汉文,肖文交,等.古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加:来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据[J].地球科学:中国地质大学学报,2012,37(3):433-450. Li Yilong, Zhou Hanwen, Xiao Wenjiao, et al. Superposition of Paleo-Asian and West-Pacific Tectonic Domains in the Eastern Section of the Solonker Suture Zone:Insights from Petrology, Geochemistry and Geochronology of Deformed Dioritein Xar Moron Fault Zone, Inner Mongolia[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(3):433-450.
[13] 李三忠,张国伟,周立宏,等.中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲[J].地学前缘,2011,18(3):79-107. Li Sanzhong, Zhang Guowei, Zhou Lihong, et al. The Opposite Meso-Cenozoic Intracontinental Deformations Under the Superconvergence:Rifting and Extension in the North China Cratonand Shortening and Thrusting in the South China Craton[J]. Earth Science Frontiers, 2011, 18(3):79-107.
[14] Richards M A. Lithgow-Bertelloni C Plate Motion Changes the Hawaiian-Emperor Bend and the Apparent Success and Failure of Geodynamic Models[J]. Earth and Planetary Science Letters, 1996, 137(1/2/3/4):19-27.
[15] 徐亚东,梁银平,江尚松,等.中国东部新生代沉积盆地演化[J].地球科学:中国地质大学学报,2014,39(8):1079-1098. Xu Yadong, Liang Yinping, Jiang Shangsong, et al. Evolution of Cenozoic Sedimentary Basins in Eastern China[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(8):1079-1098.
[16] 王力锋,汪集旸.东海天然气水合物地热研究及其环境意义[J].地学前缘,2006,13(1):15-20. Wang Lifeng, Wang Jiyang. A Geothermal Study of Gas Hydrates in the East China Sea and Its Environmental Implications[J]. Earth Science Frontiers, 2006, 13(1):15-20.
[17] 龚建明,李刚,杨传胜,等. 东海陆架盆地南部中生界分布特征与油气勘探前景[J].吉林大学学报(地球科学版),2013,43(1):20-27. Gong Jianming, Li Gang, Yang Chuansheng, et al. Hydrocarbon Prospecting of Mesozoic Strata in Southern East China Sea Shelf Basin[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1):20-27.
[1] 朱晓颖, 杨海, 匡星涛, 彭巍巍, 张洪瑞. 新疆东昆仑-阿尔金地区航磁反映的断裂构造特征[J]. 吉林大学学报(地球科学版), 2018, 48(2): 461-473.
[2] 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704.
[3] 王丹丹, 李世臻, 周新桂, 李爱勇, 温泉波, 林燕华. 大兴安岭地区突泉盆地高精度重磁电特征及其构造格架[J]. 吉林大学学报(地球科学版), 2016, 46(1): 240-253.
[4] 刘志宏,梅梅,高军义,吴相梅,黄超义,林东成,孙理难. 东北东部虎林盆地的构造特征、成盆机制及敦-密断裂带北东段的形成时代[J]. 吉林大学学报(地球科学版), 2014, 44(2): 480-489.
[5] 邓宾, 李智武,刘树根,孙东,钟勇,李金玺,汤聪. 大巴山城口弧形断裂带右旋走滑构造特征及其意义[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1501-1516.
[6] 刘志宏, 周飞, 吴相梅, 孙晓猛, 赵呈祥, 梅梅, 黄超义. 东北地区佳木斯隆起与周缘中新生代盆地群的耦合关系[J]. J4, 2011, 41(5): 1335-1344.
[7] 万志峰, 夏斌, 林舸, 施秋华, 郭峰, 刘宝明. 莺歌海盆地与济阳拗陷成因机制与沉积特征的比较及其油气勘探意义[J]. J4, 2011, 41(4): 976-982.
[8] 孙晓猛|杜继宇|单玄龙|程日辉|王英德|许强伟|田景雄. 龙门山冲断带北段前山带构造分带性及山前带变形特征[J]. J4, 2010, 40(6): 1323-1332.
[9] 刘志宏, 王芃, 刘永江, 赵呈祥, 高军义, 万传彪. 柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J]. J4, 2009, 39(5): 796-802.
[10] 沈艳杰, 程日辉, 王嘹亮, 李飞, 许中杰. 粤东地区上白垩统盐湖沉积及其在南海北部中生界油气勘探中的意义[J]. J4, 2009, 39(5): 759-766.
[11] 王嘹亮, 程日辉, 李飞, 张莉, 许中杰. 南海北部陆缘中生代沉积层序、对比和油气地质意义[J]. J4, 2009, 39(2): 175-0182.
[12] 刘志宏,吴相梅,朱德丰,崔敏,柳行军,李晓海. 大杨树盆地的构造特征及变形期次[J]. J4, 2008, 38(1): 27-0033.
[13] 王璞珺,吴河勇,庞颜明,门广田,任延广,刘万洙, 边伟华. 松辽盆地火山岩相:相序、相模式与储层物性的定量关系[J]. J4, 2006, 36(05): 805-812.
[14] 刘志宏,万传彪,任延广,李春柏,张 宏,柳行军. 海拉尔盆地乌尔逊-贝尔凹陷的地质特征及油气成藏规律[J]. J4, 2006, 36(04): 527-534.
[15] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215-0220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!