吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1277-1286.doi: 10.13278/j.cnki.jjuese.20170291

• 地球探测与信息技术 • 上一篇    

稠油热采地层阵列感应测井响应特性数值模拟

张波1, 曹洪恺2, 孙建孟2, 张鹏云2, 闫伟超2   

  1. 1. 中石化胜利石油工程有限公司测井公司, 山东 东营 257000;
    2. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
  • 收稿日期:2017-11-08 出版日期:2018-07-26 发布日期:2018-07-26
  • 作者简介:张波(1971-),男,高级工程师,主要从事测井技术研究和管理工作,E-mail:slcjzhangbo@sina.com
  • 基金资助:
    国家自然科学基金项目(41574122);国家科技重大专项(16ZX05006002-004)

Numerical Simulation of Response Characteristics of Array Induction Logging in Heavy Oil Thermal Recovery Formation

Zhang Bo1, Cao Hongkai2, Sun Jianmeng2, Zhang Pengyun2, Yan Weichao2   

  1. 1. Sinopec Shengli Well Logging Company, Dongying 257000, Shandong, China;
    2. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2017-11-08 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41574122) and National Science and Technology Major Projects (16ZX05006002-004)

摘要: 稠油热采地层温度的独特变化规律直接影响了目的层和围岩的电阻率,进而导致阵列感应测井响应的变化;因此,了解地层温度对阵列感应测井响应的影响,对于更准确地确定地层电阻率具有重要的意义。本文利用地层温度与地层电阻率的相关关系,通过有限元方法模拟不同地层温度和不同地层结构的阵列感应测井响应。数值模拟结果表明:不同线圈结构子阵列的视电阻率随地层温度的升高而下降,下降幅度与地层温度、线圈系结构以及地层原始电阻率有关;三层阶跃地层中目的层及围岩电阻率、目的层温度和厚度都会影响其测井响应,使各子阵列视电阻率曲线由目的层边缘向围岩处呈现上升的形态。通过对这些响应特征的分析研究,结合油田实例G1井进行了对比和验证,模拟结果较好地阐释了现场阵列感应测井的异常响应特征。

关键词: 地层温度, 阵列感应测井, 有限元法, 稠油热采地层

Abstract: The unique temperature change rule of heavy oil thermal recovery wells' formation directly affects the resistivity of the target layer and surrounding rock, leading to the changes of array induction logging responses. Therefore, it is important to understand the effect of formation temperature on the array induction logging response, which is vital for acquiring the formation resistivity more accurately. In this study, the relationship between the formation temperature and formation resistivity is used to simulate the response of the array induction logging under the different formation temperatures and different stratigraphic structures by the Finite element method. The results show that the apparent resistivity of the different coil structure sub-arrays decreases with the increase of the formation temperature, and the declining rate of the apparent resistivity is related to the formation temperature, the coil structure, and the real resistivity. The target layer and surrounding rock resistivity, temperature and thickness of the target layer in the three-step stratum affect the logging response, thus the resistivity curves of each sub-array show a rising shape from the edge of the target layer to the surrounding formation. Through the analysis and study of these response characteristics, combined with the comparison and verification of the Well G1 in the oilfield, the simulation results clearly illustrated the characteristics of the abnormal response of field array induction logging.

Key words: formation temperature, the array induction logging, the finite element method, heavy oil thermal recovery formation

中图分类号: 

  • P631.8
[1] 刘丹. 高分辨率阵列感应测井在苏里格致密砂岩储层评价中的应用[D].长春:吉林大学, 2016. Liu Dan. Application of HDIL in the Evaluation of Tight Sandstone Reservoirs in Sulige Area[D]. Changchun:Jilin University, 2016.
[2] 李萌. 用阵列感应测井评价地层压力[D]. 荆州:长江大学, 2016. Li Meng. Research on Prediction Method of Formation Pressure from Array Induction Logs[D]. Jingzhou:Yangtze University, 2016.
[3] 周峰, 孟庆鑫, 胡祥云,等. 利用阵列感应测井进行储层渗透率评价[J]. 地球物理学报, 2016, 59(11):4360-4371. Zhou Feng, Meng Qingxin, Hu Xiangyun, et al. Evaluation of Reservoir Permeability Using Array Induction Logging[J]. Chinese Journal of Geophysics, 2016, 59(11):4360-4371.
[4] 李波. 应用阵列感应资料识别油水层[J]. 当代化工研究, 2017, 26(3):34-35. Li Bo. Application of Multi-Array Induction Data in the Recognition of Oil-Water Layer[J]. Modern Chemical Research, 2017, 26(3):34-35.
[5] 杜炳锐. 电法在深部地热勘查中的应用研究[D]. 成都:成都理工大学, 2011. Du Bingrui. The Study of Electrical Prospecting in the Deep Geothermal Investigation[D]. Chengdu:Chengdu University of Technology, 2011.
[6] 耿娜娜. 稠油热采井高温防砂技术研究[D]. 青岛:中国石油大学(华东),2007. Geng Nana. The Technique of Sand Control for Heavy Oil Well at High Temperature[D]. Qingdao:China University of Petroleum. 2007.
[7] 郭宽良. 数值计算传热学[M]. 合肥:安徽科学技术出版社, 1987. Guo Kuanliang. Numerical Computation Heat Transfer[M]. Hefei:Anhui Science and Technology Publishing House, 1987.
[8] 施天谟. 计算传热学[M]. 北京:科学出版社, 1987. Shi Tianmo. Calculate Heat Transfer[M]. Beijing:Science Press, 1987.
[9] 李大潜. 有限元素法在电法测井中的应用[M]. 北京:石油工业出版社, 1984. Li Daqian. Application of Finite Element Method in Electrical Logging[M]. Beijing:Petroleum Industry Press, 1980.
[10] 邓少贵, 李智强, 范宜仁,等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟[J]. 地球物理学报, 2010, 53(4):994-1000. Deng Shaogui, Li Zhiqiang, Fan Yiren, et al. Numerical Simulation of Mud Invasion and Its Array Laterolog Response in Deviated Wells[J]. Chinese Journal of Geophys, 2010, 53(4):994-1000.
[11] 邓少贵, 莫宣学, 卢春利,等. 缝-洞型地层缝洞的双侧向测井响应数值模拟[J]. 石油勘探与开发, 2012, 39(6):706-712. Deng Shaogui, Mo Xuanxue, Lu Chunli, et al. Numerical Simulation of the Dual Laterolog Response to Fractures and Caves in Fractured Cavernous Formation[J]. Petroleum Exploration and Development, 2012, 39(6):706-712.
[12] 仵杰, 李宇腾, 付晨东,等. 钻遇断层水平井地层模型的阵列感应测井响应特性数值模拟[J]. 测井技术, 2017, 41(3):266-271. Wu Jie, Li Yuteng, Fu Chendong, et al. Numerical Simulation of Response Characteristics to the Array Indication Logging in the Horizontal Well Penetrating Faults[J]. Well Logging Technology, 2017, 41(3):266-271.
[13] 仵杰,史盼盼,陈延军,等. 阵列感应测井在斜井和水平井中的响应特性[J].测井技术, 2016, 40(2):152-160. Wu Jie, Shi Panpan, Chen Yanjun, et al. Response Characteristics of Array Induction Logging in Deviated and Horizontal Well[J]. Well Logging Technology, 2016, 40(2):152-160.
[14] 王昌学, 储昭坦, 肖承文,等. 井环境对阵列感应测井响应的影响分析[J]. 地球物理学报, 2013, 56(4):1392-1403. Wang Changxue, Chu Zhaotan, Xiao Chengwen, et al. The Analysis of Effect of the Borehole Environment on Response of Array Induction Logging[J]. Chinese Journal of Geophys, 2013, 56(4):1392-1403.
[15] 王钰楠, 关静. 阵列感应测井在直井和斜井中的对比[J].计算机时代,2017(2):55-56. Wang Yunan, Guan Jing. Comparison of Array Induction Logging in Vertical Well and Deviated Well[J]. Computer Era, 2017(2):55-56.
[16] 姜艳娇,孙建孟,高建申,等. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J].吉林大学学报(地球科学版),2017,47(1):265-278. Jiang Yanjiao, Sun Jianmeng, Gao Jianshen, et al. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):265-278.
[17] 陈刚. 碳酸盐岩储层温度特征及温度测井资料应用研究[D].长春:吉林大学, 2013. Chen Gang. The Research of Temperature Characteristics in Carbonate Reservoirs and Temperature Logging Data Application[D]. Changchun:Jilin University, 2013.
[18] 周新刚. 基于有限元法的水平井阵列感应测井响应数值计算研究[D].西安:西安石油大学,2012. Zhou Xingang. Numerical Simulation of Responses of Array Induction Loggong in Horizontal Wells Based on the FEM[D]. Xi'an:Xi'an Shiyou University, 2012.
[19] 张建华,刘振华,仵杰. 电法测井原理与应用[M].西安:西北大学出版社,2002. Zhang Jianhua, Liu Zhenhua, Wu Jie. Principle and Application of Electrical Well Logging[M]. Xi'an:Northwest University Press, 2002.
[1] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[2] 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1678-1686.
[3] 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930.
[4] 戴黎明,李三忠,楼达,索艳慧,刘鑫,余珊,周淑慧. 亚洲大陆主要活动块体的现今构造应力数值模拟[J]. 吉林大学学报(地球科学版), 2013, 43(2): 469-483.
[5] 年廷凯,张克利,刘红帅,徐海洋. 基于强度折减法的三维边坡稳定性与破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(1): 178-185.
[6] 刘红帅, 年廷凯, 万少石. 三维边坡稳定性分析中的边界约束效应[J]. J4, 2010, 40(3): 638-644.
[7] 赵广茂,李桐林,王大勇,李建平. 基于二次场二维起伏地形MT有限元数值模拟[J]. J4, 2008, 38(6): 1055-1059.
[8] 戴文亭,陈星,张弘强. 粘性土的动力特性实验及数值模拟[J]. J4, 2008, 38(5): 831-0836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王明常, 张馨月, 张旭晴, 王凤艳, 牛雪峰, 王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373 -378 .