吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1654-1668.doi: 10.13278/j.cnki.jjuese.20170321

• 地质与资源 • 上一篇    

非洲东南部造山型金矿成矿环境与资源潜力分析

孙宏伟, 唐文龙, 刘晓阳, 任军平, 许康康, 吴兴源, 贺福清   

  1. 中国地质调查局天津地质调查中心, 天津 300170
  • 收稿日期:2017-12-05 发布日期:2018-11-26
  • 通讯作者: 唐文龙(1979-),男,高级工程师,主要从事地质矿产调查和成矿规律方面的研究,E-mail:twl011562@126.com E-mail:twl011562@126.com
  • 作者简介:孙宏伟(1986-),男,工程师,主要从事矿物学、岩石学、矿床学方面的研究,E-mail:shwcub@163.com
  • 基金资助:
    中国地质调查局地质调查项目(DD20160108,121201006000150014)

Metallogenic Environment and Resource Potential of Orogenic Gold Deposit in Southeast Africa

Sun Hongwei, Tang Wenlong, Liu Xiaoyang, Ren Junping, Xu Kangkang, Wu Xingyuan, He Fuqing   

  1. Tianjin Center, China Geological Survey, Tianjin 300170, China
  • Received:2017-12-05 Published:2018-11-26
  • Supported by:
    Supported by Project of China Geological Survey (DD20160108,121201006000150014)

摘要: 造山型金矿床是世界上最重要的金矿类型之一。非洲东南部地区发育有大规模的该类型矿床,因此对该地区造山型金矿床的研究具有重要意义。本文通过对非洲东南部地区大地构造格架及演化、造山型金矿床的时空分布、成矿环境及矿床地质特征的总结整理,并结合对该地区典型造山型金矿床的剖析,认为该地区造山型金矿的形成与克拉通及克拉通之间造山带的演化密切相关,空间上主要分布在各克拉通内的绿岩带及克拉通之间造山带内,时间上主要集中于3.20~3.00、2.70~2.55和2.10~1.80 Ga 3个时期。在此基础上,对非洲东南部地区划分出基巴拉、乌本迪、泛非、林波波4个主要的造山型金矿成矿潜力区。

关键词: 非洲东南部, 造山型金矿, 时空分布, 成矿环境, 资源潜力

Abstract: The orogenic gold deposit is one of the most important gold deposit types in the world. There are a large number of this type of deposits in Southeast Africa, and it is of great significance to study these orogenic gold deposits in this region. On the basis of summarization of the spatial and temporal distribution, metallogenic environment and geological characteristics of the orogenic gold deposits, together with the analysis of the typical orogenic gold deposit in the region, we suggest that the formation of the orogenic gold deposits in the region was closely related to the evolution of the orogenic belt and craton through the three mineralization stages of 3.20-3.00, 2.70-2.55 and 2.10-1.80 Ga. On this basis, four major orogenic gold mineralization potential areas are delineated in Southeast Africa:Kibaran, Ubendian, Pan-Africa and Limpopo.

Key words: Southeast Africa, orogenic gold deposits, spatial and temporal distribution, metallogenic environment, resource potential

中图分类号: 

  • P618.51
[1] 刘山恩.中国黄金年鉴2012[R]. 北京:中国黄金协会,2013:1-87. Liu Shan'en. China Golden Yearbook of 2012[R]. Beijing:China Gold Association,2013:1-87.
[2] 任军平,王杰,刘晓阳,等.非洲中南部铜多金属矿床研究现状及找矿潜力分析[J]. 吉林大学学报(地球科学版),2017, 47(4):1083-1103. Ren Junping, Wang Jie, Liu Xiaoyang, et al. Research Status and Prospecting Potential of Copper Polymetallic Deposits in Central-South Africa[J]. Journal of Jilin University (Earth Science Edition), 2017,47(4):1083-1103.
[3] 唐文龙,孙宏伟,刘晓阳,等.中南部非洲镍矿成矿规律及资源潜力分析[J]. 吉林大学学报(地球科学版),2018,48(1):1-17. Tang Wenlong, Sun Hongwei, Liu Xiaoyang, et al. Metallogeny and Resource Potential of Nickel Deposits in the Mid-Southern Africa[J]. Journal of Jilin University (Earth Science Edition),2018,48(1):1-17.
[4] Groves D I, Goldfarb R J, Gebre-Mariam H, et al. Orogenic Gold Deposits-a Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Type[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5):7-27.
[5] Goldfarb R J, Baker T, Dube B, et al. Distribution, Character and Genesis of Gold Deposits in Metamorphic Terranes[C]//Hedenquist J W, Thompson J F H, Goldfarb R G. Economic Geology 100th Anniversary Volume. Littleton:Society of Economic Geologists, 2005:407-450.
[6] 薛春纪,赵晓波,张国震,等. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J]. 中国地质,2015,42(3):381-410. Xue Chunji, Zhao Xiaobo, Zhang Guozhen, et al. Metallogenic Environments, Ore-Forming Types and Prospecting Potential of Au-Cu-Zn-Pb Resources in Western Tianshan Mountains[J]. Geology in China,2015,42(3):381-410.
[7] Sillitoe R H, Hedenquist J W. Linkages Between Vol-canotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits[J]. Society of Economic Geologists Specical Publication,2003,10:315-343.
[8] Sillitoe R H. Porphyry Copper Systems[J]. Economic Geology, 2010,105(1):3-41.
[9] Hedenquist J W, Arribas A, Gonzalez-Urien E. Exp-loration for Epithermal Gold Deposits[J]. Reviews in Economic Geology,2000,13(2):245-277.
[10] Cooper M R. Tectonic Cycles in Southern Africa[J]. Earth Science Reviews,1990,28(4):321-364.
[11] Youssof M, Thybo H, Artemieva I M, et al. Moho Depth and Crustal Composition in Southern Africa[J]. Tectonophysics,2013,609:267-287.
[12] Tugume F, Nyblade A, Julià J, et al. Precambrian Crustal Structure in Africa and Arabia:Evidence Lacking for Secular Variation[J]. Tectonophysics,2013,609:250-266.
[13] Dirks P H G M, Charlesworth E G, Munyai M R, et al. Stress Analysis, Postorogenic Extension and 3.01 Ga Gold Mineralisation in the Barberton Greenstone Belt, South Africa[J]. Precambrian Research,2013,226:157-184.
[14] Markwitz V, Maier W D, González-Álvarez I, et al. Magmatic Nickel Sulfide Mineralization in Zimbabwe:Review of Deposits and Development of Exploration Criteria for Prospectivity Analysis[J]. Ore Geology Reviews,2010,38:139-155.
[15] Smit C A, Van Reenen D D, Roering C. Role of Fluids in the Exhumation of the Southern Marginal Zone of the Limpopo Complex, South Africa[J]. Precambrian Research,2014,253:81-95.
[16] Emel J, Plisinski J, Rogan J. Monitoring Geomorphic and Hydrologic Change at Mine Sites Using Satellite Imagery:The Geita Gold Mine in Tanzania[J]. Applied Geography,2014,54:243-249.
[17] Lawley C J M, Selby D, Condon D, et al. Palaeo-proterozoic Orogenic Gold Style Mineralization at the Southwestern Archaean Tanzanian Cratonic Margin, Lupa Goldfield, SW Tanzania:Implications from U-Pb Titanite Geochronology[J]. Gondwana Research,2014,26(3/4):1141-1158.
[18] Dirks P H G M, Charlesworth E G, Munyai M R. Cratonic Extension and Archaean Gold Mineralisation in the Sheba-Fairview Mine, Barberton Greenstone Belt, South Africa[J]. South African Journal of Geology,2009,112(3/4):291-316.
[19] LeAnderson P J, Yoldash M, Johnson P R, et al. Structure, Vein Paragenesis, and Alteration in the Al Wajh Gold District, Saudi Arabia[J]. Economic Geology,1995,90(8):2262-2273.
[20] Botros N S. The Role of the Granite Emplacement and Structural Setting on the Genesis of Gold Mineralization in Egypt[J]. Ore Geology Reviews,2015,70:173-187.
[21] Lindgren W. Mineral Deposits[M]. New York and London:McGraw-Hill Book Company,1913:547-551.
[22] Bonnemaison M, Marcoux E. Auriferous Minerali-zation in Some Shear Zones:A Three Stage Model of Metalogenesis[J]. Mineralium Deposita,1990,25(2):96-104.
[23] Mueller A G, Groves D I. The Classification of Western Australian Greenstone-Hosted Gold Deposits According to Wallrock-Alteration Mineral Assemblages[J]. Ore Geology Reviews,1991,6(4):291-331.
[24] Hagemann S, Cassidy K F. Archean Orogenic Lode Gold Deposits[J]. Reviews in Economic Geology,2000,13:9-68.
[25] 陈衍景.大陆碰撞成矿理论的创建及应用[J]. 岩石学报,2013,29(1):1-17. Chen Yanjing. The Development of Continental Collision Metallogeny and Its Application[J]. Acta Petrologica Sinica,2013,29(1):1-17.
[26] Groves D I, Goldfarb R J, Robert F, et al. Gold Deposits in Metamorphic Belts:Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance[J]. Economic Geology,2003,98(1):1-29.
[27] 陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质,2006,33(6):1181-1196. Chen Yanjing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential[J]. Geology in China,2006,33(6):1181-1196.
[28] 蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009,25(11):2727-2738. Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, et al. Jiaodong and Xiaoqinling:Two Orogenic Gold Provinces Formed in Different Tectonic Settings[J]. Acta Petrologica Sinica,2009,25(11):2727-2738.
[29] Goldfarb R J, Leach D L, Pickthorn W J, et al. Origin of Lode-Gold Deposits of the Juneau Gold Belt, Southeastern Alaska[J]. Geology,1988,16(5):440-443.
[30] Goldfarb R J, Snee L W, Pickthorn W J. Orogenesis, High-T Thermal Events, and Gold Vein Formation Within Metamorphic Rocks of the Alaskan Cordillera[J]. Mineralogical Magazine,1993,57(3):375-394.
[31] 邱正杰,范宏瑞,丛培章,等.造山型金矿床成矿过程研究进展[J]. 矿床地质,2015,34(1):21-28. Qiu Zhengjie, Fan Hongrui, Cong Peizhang, et al. Recent Progress in the Study of Ore-Forming Processes of Orogenic Gold Deposits[J]. Mineral Deposits,2015,34(1):21-28.
[32] Goldfarb R J, Groves D, Gardoll S. Orogenic Gold and Geologic Time:A Global Synthesis[J]. Ore Geology Reviews, 2001,18(1):1-75.
[33] De Ronde C E J, Kamo S L, Davis D W, et al. Field, Geochemical and U-Pb Isotopic Constraints from Hypabyssal Felsic Intrusion Within the Barberton Greenstone Belt, South Africa:Implications for Tectonics and the Timing of Gold Mineralization[J]. Precambrian Research,1991,49(3/4):261-280.
[34] Dziggel A, Poujol M, Otto A, et al. New U-Pb and Ar40/Ar39 Ages from the Northern Margin of the Barberton Greenstone Belt, South Africa:Implications for the Formation of Mesoarchaean Gold Deposits[J]. Precambrian Research,2010,179(1):206-220.
[35] Mc Keagney C J, Boulter C A, Jolly R J H, et al. 3-D Mohr Circle Analysis of Vein Opening, Indarama Lode-Gold Deposit, Zimbabwe:Implications for Exploration[J]. Journal of Structural Geology,2004,26(6):1275-1291.
[36] Buchholz P, Oberthur T. Multistage Au-As-Sb Mineralization and Crustal-Scale Fluid Evolution in the Kwekwe District, Midlands Greenstone Belt, Zimbabwe:A Combined Geochemical, Mineralogical, Stable Isotope, and Fluid Inclusion Study[J]. Economic Geology,2007,102(3):347-378.
[37] Oberthur T, Weiser T W. Gold-Bismuth-Telluride-Sulphide Assemblages at the Viceroy Mine, Harare-Bindura-Shamva Greenstone Belt, Zimbabwe Mineralogical[J]. Magazine,2000,72(4):953-970.
[38] Kolb J, Kisters A M F, Hoernes S, et al. The Origin of Fluids and Nature of Fluid-Rock Interaction in Midcrustal Auriferous Mylonites of the Renco Mine, Southern Zimbabwe[J]. Mineralium Deposita,2000,35(2/3):109-125.
[39] Van Reenen D D, Pretorius A I, Roering C. Char-acterization of Fluids Associated with Gold Mineralization and with Regional High Temperature Retrogression of Granulites in the Limpopo Belt, South Africa[J]. Geochimica et Cosmochimica Acta,1994,58(3):1147-1159.
[40] Sanislav I V, Wormald R J, Dirks P H G M, et al. Zircon U-Pb Ages and Lu-Hf Isotope Systematics from Late-Tectonic Granites, Geita Greenstone Belt:Implications for Crustal Growth of the Tanzania Craton[J]. Precambrian Research,2014,242:187-204.
[41] Pinna P, Cocherie A, Thieblemont D, et al. The Archean Evolution of the Tanzanian Craton (2.03-2.53 Ga)[J]. Journal of African Earth Sciences,1999,28(4):62-63.
[42] Lenoir J L, Liegeois J P, Theunissen K, et al. The Paleoproterozoic Ubendian Shear Belt in Tanzania:Geochronology and Structure[J]. Journal of African Earth Sciences,1994,19(3):169-184.
[43] Kuehn S, Ogola J, Sango P. Regional Setting and Nature of Gold Mineralization in Tanzania and Southwest Kenya[J]. Precambrian Research,1990,46(1):71-82.
[44] Boer R H, Meyer F M, Robb L J, et al. Meso-thermal-Type Mineralization in the Sabie-Pilgrim's Rest Gold Field, South Africa[J]. Economic Geology,1995,90(4):860-876.
[45] Zoheir B, Weihed P. Greenstone-Hosted Lode-Gold Mineralization at Dungash Mine, Eastern Desert, Egypt[J]. Journal of African Earth Sciences,2014,99:165-187.
[46] Worku H. Structural Control and Metamorphic Se-tting of Shear Zone-Related Au Vein Mineralization of the Adola Belt (Southern Ethiopia) and Its Tectono Genetic Development[J]. Journal of African Earth Sciences,1996,23(3):383-409.
[47] Garba I. Tourmalinization Related to Late Protero-zoic-Early Paleozoic Lode Gold Mineralization in the Bin Yauri Area, Nigeria[J]. Mineralium Deposita,1996,31(3):201-209.
[48] De Ronde C E J, De Wit M J. Tectonic History of the Barberton Greenstone Belt, South Africa:490 Million Years of Archean Crustal Evolution[J]. Tectonics,1994,13(4):983-1005.
[49] Foster R P, Piper D P. Archaean Lode Gold Deposits in Africa-Crustal Setting, Metallogenesis and Cratonization[J]. Ore Geology Reviews,1993,8(3/4):303-347.
[50] Darbyshire D P F, Pitfield P E J, Campbell S D G. Late Archean and Early Proterozoic Gold-Tungsten Mineralization in the Zimbabwe Archean Craton Rb-Sr and Sm-Nd Isotope Constraints[J]. Geology,1996,24(1):19-22.
[51] Vinyu M L, Frei R, Jelsma H A. Timing Between Granitoid Emplacement and Associated Gold Mineralization-Examples from the Ca.2.7 Ga Harare-Shamva Greenstone Belt, Northern Zimbabwe[J]. Canadian Journal of Earth Sciences,1996,33(7):981-992.
[52] Haest M, Muchez P. Stratiform and Vein-Type Deposits in the Pan-African Orogeny in Central and Southern Africa:Evidence for Multiphase Mineralization[J]. Geologica Belgica,2011,14(1/2):23-44.
[53] Potrel A, Peucat J J, Fanning C M. Archean Crustal Evolution of the West African Craton:Example of the Amsaga Area, U-Pb and Sm-Nd Evidence for Crustal Growth and Recycling[J]. Precambrian Research,1998,90(3):107-117.
[54] Eglington B M, Armstrong R A. The Kaapvaal Craton and Adjacent Orogens, Southern Africa:A Geochronological Database and Overview of the Geological Development of the Craton[J]. South African Journal of Geology,2004, 107(1/2):13-32.
[55] Wit M J D, Ronde C E J D, Tredoux M, et al. Formation of an Archean Continent[J]. Nature,1992,357:553-562.
[56] Wilson J F. A Craton and Its Cracks:Some of the Behaviour of the Zimbabwe Block from the Late Archaean to the Mesozoic in Response to Horizontal Movements, and the Significance of Some of Its Mafic Dyke Fracture Patterns[J]. Journal of African Earth Sciences (and the Middle East),1990,10(3):483-501.
[57] Dirks P H G M, Jelsma H A. Crust-Mantle De-coupling and the Growth of the Archean Zimbabwe Craton[J]. Journal of African Earth Sciences,2002,34(3/4):157-166.
[58] Gabert G. Lithostratigraphic and Tectonic Setting of Gold Mineralization in the Archeancratons of Tanzania and Uganda[J]. Precambrian Research,1990,46(1/2):59-69.
[59] Pinna P, Cocherie A, Thieblemont D, et al. The Kisii Group of Western Kenya:An End-Archaean (2.53 Ga) Late Orogenic Volcano Sedimentary Sequence[J]. Journal of African Earth Sciences, 2000,30(1):79-97.
[60] Sanislav I V, Wormald R J, Dirks P, et al. Zircon U-Pb Ages and Lu-Hf Isotope Systematics from Late-Tectonic Granites, Geita Greenstone Belt Implications for Crustal Growth of the Tanzania Craton[J]. Precambrian Research, 2014,242:187-204.
[61] Manya S, Maboko M A H. Dating Basaltic Volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton Using the Sm-Nd Method:Implications for the Geological Evolution of the Tanzania Craton[J]. Precambrian Research,2003,121(1):35-45.
[62] Waele B D, Liégeois J P, Nemchin A A, et al. Isotopic and Geochemical Evidence of Proterozoic Episodic Crustal Reworking Within the Irumide Belt of South-Central Africa, the Southern Metacratonic Boundary of an Archaean Bangweulu Craton[J]. Precambrian Research,2006,148(3):225-256.
[63] McCourt S, Van Reenen D D. Structural Geology and Tectonic Setting of the Sutherland Greenstone Belt, Kaapvaal Craton, South Africa[J]. Precambrian Research,1992,55(1/2/3/4):93-110.
[64] Kröner A, Jaeckel P, Brandl G, et al. Single Zircon Ages for Granitoid Gneisses in the Central Zone of the Limpopo Belt, Southern Africa and Geodynamic Significance[J]. Precambrian Research,1999,93(4):299-337.
[65] Shackleton R M. The Final Collision Zone Between East and West Gondwana:Where Is It?[J]. Journal of African Earth Sciences,1996,23(3):271-287.
[66] Goldfarb R J, Taylor R D, Collins G S, et al. Phanerozoic Continental Growth and Gold Metallogeny of Asia[J]. Gondwana Research,2014,25(1):48-102.
[67] Byerly G R, Kröner A, Lowe D R, et al. Prolonged Magmatism and Time Constraints for Sediment Deposition in the Early Archean Barberton Greenstone Belt:Evidence from the Upper Onverwacht and Fig Tree Groups[J]. Precambrian Research,1996,78(1/2/3):125-138.
[68] Hofmann A. The Geochemistry of Sedimentary Rocks from the Fig Tree Group, Barberton Greenstone Belt:Implications for Tectonic, Hydrothermal and Surface Processes During Mid-Archaean Times[J]. Precambrian Research,2005,143(1/2/3/4):23-49.
[69] Cabri L J, Chryssoulis S L, de Villiers J P R, et al. The Nature of "Invisible" Gold in Arsenopyrite[J]. The Canadian Mineralogist,1989,27(3):353-362.
[70] De Ronde C E J, Spooner E T C, de Wit M J, et al. Shear Zone Related, Au Quartz Vein Deposits in the Barberton Greenstone Belt, South Africa:Field and Petrographic Characteristics, Fluid Properties, and Light Stable Isotope Geochemistry[J]. Economic Geology,1992,87(2):366-402.
[71] Otto A, Dziggel A, Kisters A F M, et al. The New Consort Gold Mine, Barberton Greenstone Belt, South Africa:Orogenic Gold Mineralization in a Condensed Metamorphic Profile[J]. Mineralium Deposita,2007,42(7):715-735.
[72] Lawley C J M, Selby D, Condon D, et al. Pala-eoproterozoic Orogenic Gold Style Mineralization at the Southwestern Archaean Tanzanian Cratonic Margin, Lupa Goldfield, SW Tanzania:Implications from U-Pb Titanite Geochronology[J]. Gondwana Research,2014,26(3/4):1141-1158.
[73] Kilembe E A, Rosendahl B R. Structure and Stratigraphy of the Rukwa Rift[J]. Tectonophysics,1992,209(1/2/3/4):143-158.
[74] Lawley C J M, Selby D, Condon D J, et al. Lithogeochemistry, Geochronology and Geodynamic Setting of the Lupa Terrane, Tanzania:Implications for the Extent of the Archean Tanzanian Craton[J]. Precambrian Research,2013,231:174-193.
[75] Boniface N, Schenk V, Appel P. Paleoproterozoi-ceclogites of MORB-Typechemistry and Three Proterozoic Orogenic Cycles in the Ubendian Belt (Tanzania):Evidence from Monazite and Zircon Geochronology and Geochemistry[J]. Precambrian Research,2012,192:16-33.
[76] Groves D I. The Crustal Continuum Model for Late-Archaean Lode-Golddeposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita,1993,28(6):366-374.
[77] Weinberg R F, Hodkiewicz P F, Groves D I. What Controls Gold Distribution in Archean Terranes[J]. Geology,2004, 32(7):545-548.
[78] Micklethwaite S, Sheldon H A, Baker T. Active Fault and Shear Processes and Their Implications for Mineral Deposit Formation and Discovery[J]. Journal of Structural Geology,2010,32(2):151-165.
[79] Lawley C, Imber J, Selby D. Structural Controls on Orogenic Au Mineralization During Transpression:Lupa Goldfield, Southwestern Tanzania[J]. Economic Geology,2013,108(7):1615-1640.
[80] Stocklmayer V R, Stidolph P A, Clay A. The Geo-logy of the Salisbury-Enterprise Gold Belt[M]. Salisbury:Rhodesian Geological Survey,1979:1-12.
[81] Baldock J W, Styles M T, Kalbskopf S, et al. The Geology of the Harare Greenstone Belt and Surrounding Granitic Terrain[M]. Harare:Zimbabwe Geological Survey,1991.
[82] Pohl W, Gunther M A. The Origin of Kibaran Late Mid-Proterozoic Tin, Tungsten, and Gold Quartz Vein Deposits in Central Africa:A Fluid Inclusion Study[J]. Mineralium Deposita,1991,26(1):51-59.
[83] Pohl W. Metallogeny of the Northeastern Kibara Belt, Central Africa-Recent Perspectives[J]. Ore Geology Reviews, 1994,9(2):105-130.
[84] Kamona A F. Mineralization Types in the Mozam-bique Belt of Eastern Zambia[J]. Journal of African Earth Sciences, 1994,19(3):237-243.
[1] 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[2] 唐文龙, 孙宏伟, 刘晓阳, 王杰, 左立波, 吴兴源. 中南部非洲镍矿成矿规律及资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 53-69.
[3] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70-86.
[4] 吕斌, 王涛, 童英, 张磊, 杨奇荻, 张建军. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J]. 吉林大学学报(地球科学版), 2017, 47(2): 305-343.
[5] 谷团. 牛角塘伴生型镉矿床特殊的成矿环境[J]. 吉林大学学报(地球科学版), 2017, 47(2): 464-476.
[6] 张延军, 余海, 李建明, 于子望, 张佳宁. 深部水热型地热潜力区的GIS预测模型——以土耳其西安纳托利亚地区为例[J]. 吉林大学学报(地球科学版), 2016, 46(3): 855-864.
[7] 杜治利, 田亚, 刘洪军, 王凤琴, 杜小弟, 袁远, 仝立华. 鄂尔多斯盆地南部延长组长9段页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2016, 46(2): 358-367.
[8] 马锋, 张光亚, 王红军, 刘祚冬, 蒋凌志, 谢寅福, 李飞, 琚亮. 全球重油与油砂资源潜力、分布与勘探方向[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1042-1051.
[9] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[10] 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155.
[11] 刘福春,程日辉,解启来,胡望水,汤济广,李忠博,杨秀辉,徐浩,周隶华. 松辽盆地梨树断陷页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2014, 44(3): 762-773.
[12] 牛翠祎,韩先菊,卿敏. 中国金矿矿产预测评价模型及资源潜力分析[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1210-1222.
[13] 王海欧,黄震,黄建平,魏芳,来又东. 江苏省铅锌矿综合评价模型及资源潜力分析[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1169-1178.
[14] 黄传冠,刘春根,丁少辉,江俊杰,雷良城. 含矿地质体体积法在江西德兴地区铜矿资源潜力评价中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1143-1150.
[15] 王登红,陈毓川,徐志刚,盛继福,朱明玉,刘喜方,张长青,王成辉,王永磊. 矿产预测类型及其在矿产资源潜力评价中的运用[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1092-1099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!