吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 899-906.doi: 10.13278/j.cnki.jjuese.201703303

• 地球探测与信息技术 • 上一篇    下一篇

一种基于Kozeny-Carmen方程改进的渗透率预测新方法

张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠   

  1. 中海石油(中国)有限公司湛江分公司, 广东 湛江 524057
  • 收稿日期:2016-09-07 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:张恒荣(1984-),男,硕士,工程师,主要从事测井方法、解释的科研工作,E-mail:zhanghr@cnooc.com.cn
  • 基金资助:
    国家科技重大专项项目(2016ZX05024-006)

A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation

Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan   

  1. Zhanjiang Branch of CNOOC Ltd.,Zhanjiang 524057,Guangdong,China
  • Received:2016-09-07 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Science and Technology Major Project (2016ZX05024-006)

摘要: 在计算复杂孔隙结构储层渗透率时,常规采用的孔渗指数方法或流动单元分类方法几乎很难准确评价渗透率。针对这一问题,本文提出一种引入修正迂曲度因子的改进的Kozeny-Carmen方程渗透率计算新方法。首先引入迂曲度因子修正Kozeny-Carmen方程,迂曲度因子可以表达为孔隙度与岩电参数的函数;然后对改进的Kozeny-Carmen方程进行推演变换,得到新的流动单元指数,能够更好地将储层进行分类;最后利用自适应神经模糊推理系统建立取心段岩心渗透率与测井曲线的模型,并将此模型应用到非取心段的渗透率评价中。岩心渗透率与预测渗透率的对比验证了该方法的正确性与有效性,且渗透率计算精度较常规孔渗指数方法和流动单元分类方法有较大提高。该方法在南海西部海域莺歌海盆地东方气田储层评价中应用效果良好。

关键词: 渗透率, Kozeny-Carmen方程, 流动单元指数(FZI), 自适应神经模糊推理系统(ANFIS)

Abstract: In the calculation of reservoir permeability of complex pore structure, it is very difficult to accurately evaluate the permeability. To solve this problem, this paper presents a new method to improve the calculation of permeability based on the Kozeny-Carmen equation by introducing the modified tortuosity factor. Firstly, the Kozeny-Carmen equation is modified by adding the tortuosity factor, which can be expressed as a function of porosity and electrical parameters; then the modified Kozeny-Carmen equation is deduced and transformed to get the new flow unit index for better reservoir classification; finally, a model of core premeability and log curve of coring and logging section using adaptive neural fuzzy inference system, and this model is applied to the non-coring section in permeability evaluation. The correctness and effectiveness of the method is verified by comparing the permeability of the core and the predicted permeability, and the accuracy of the permeability calculation is much higher than both that of the conventional porosity exponential method and the flow unit classification method. This method has good effects in the gas reservoir evaluation of Yinggehai basin east in western South China Sea.

Key words: permeability, Kozeny-Carmen equation, flow zone index (FZI), adaptive neural fuzzy inference system(ANFIS)

中图分类号: 

  • P631.8
[1] Timur A. An Investigation of Permeability, Porosity and Residual Water Saturation Relationships for Sandstone Reservoirs [J]. The Log Analyst,1968,9(4):8-17.
[2] Dubrule O,Haldorsen R H. Geostatistics for Per-meability Estimation[J]. Reservoir Characterization,1986, 15(1) :223-247.
[3] Anselmetti F S,Luthi S.Quantitative Characterization of Carbonate Pore Systems by Digital Image Analysis[J]. AAPG Bulletion,1998,82(10):1815-1836.
[4] Kozeny J. Ueber Kapillare Leitung des Wassers im Boden, Sitzungsberichte[J]. Royal Academy of Science,Vienna,Proc Class I,1927,136(2):271-306.
[5] Carman P C. Fluid Flow Through Granular Beds[J]. Transactions Institution of Chemical Engineers,1937,15(1): 150-166.
[6] Timur A. Producible Porosity and Permeability of Sandstone Investigated Through Nuclear Magnetic Resonance Principles[J]. The Log Analyst,1969,10(1):3-11.
[7] Coates G R, Dumanoir J L. A New Approach to Improved Logderived Permeability[J]. The Log Analyst,1974,15(1): 17-23.
[8] Krumbein W C,Monk G D. Permeability as a Function of the Size Parameters of Unconsolidated Sand[J]. Transactions of the Aime, 1942,151(228): 153-163.
[9] Herron M M. Estimationg the Intrinsic Permeability of Classic Sediments from Geochemical Data[C]//SPWLA 28th Annual Symposium. London: [s.n.], 1987: 200-223.
[10] Amaefule J O,Altunbay M. Enhanced Reservoir Des-cription: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells [C]//Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. Houston: SPE, 1993:205-220.
[11] Ahmed U,Crary S F,Coates G R. Permeability Estimation: The Various Sources and Their Interrelationships[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1991, 43(5):578-587.
[12] Babadagli T,Al-Salmi S. A Review of Permeability Pprediction Methods for Carbonate Reservoirs Using Well-Log Data [J]. Spe Reservoir Evaluation & Engineering, 2004, 7(2):75-88.
[13] Francisco J V P,Alberto J O T. Validity of the Permeability Carman-Kozeny Equation: A Volume Averaging Approach[J]. Phys, 2009, A388: 789-798.
[14] Rose W,Bruce W A. Evaluation of Capillary Cha-racter in Petroleum Reservoir Rock[J]. Journal of Petroleum Technology,1949,1(5) : 127-142.
[15] Wyllie M R J,Rose W D. Some Theoretical Con-siderations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rock from Electrical Log Data[J]. Journal of Petroleum Technology, 1950, 2(4):105-118.
[16] Wyllie M R J,Spangler M B. Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media[J]. Bull Am Assoc Petro Geol, 1952, 36(2):359-403.
[17] Winsauer W, Shearin H. Resistivity of Brine-Satu-rated Sands in Relation to Pore Geometry[J]. Bull AAPG,1952, 36 (2) : 253-277.
[18] Shenawi S H,White J P. Permeability and Water Saturation Distribution by Lithologic Facies and Hydraulic Units: A Reservoir Simulation Case Study[C]//Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. [s.l.]: SPE, 2007:1-7.
[19] 山世光.人脸识别中若干关键问题的研究[D]. 北京:中国科学院研究生院,2004. Shan Shiguang. Study on Some Key Issuses in Face Recognition[D]. Beijing: Graduate University of Chinese Academy of Sciences,2004.
[20] 陈烨菲,彭仕宓.沉积微相定量研究方法[J].石油勘探与开发,2003,30(4):51-53. Chen Yefei,Peng Shimi. Quantitative Study on Sedimentary Microfacies[J]. Petroleum Exploration and Development,2003,30(4): 51-53.
[21] 刘普寅,李洪兴.基于模糊神经网络的图像恢复技术[J].中国科学:E辑:技术科学,2002, 32(4): 541-552. Liu Puyin,Li Hongxing. Image Restoration Technology Based on Fuzzy Neural Network[J]. Chinese Science:Series E: Technology Science,2002,32(4): 541-552.
[22] 张伙兰,裴健翔,张迎朝.莺歌海盆地东方区中深层黄流组超压储集层特征[J].石油勘探与开发,2013,40(3): 284-293. Zhang Huolan,Pei Jianxiang,Zhang Yingzhao. Overpressure Reservoirs in the Mid-Deep Huangliu Formation of the Dongfang Area,Yinggehai Basin,South China Sea[J]. Petroleum Exploration and Development,2013,40(3): 284-293.
[23] 郑香伟,吴健,何胜林,等. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016,46(1): 286-294. Zheng Xiangwei, Wu Jian, He Shenglin, et al. Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit[J]. Journal of Jilin University (Earth Science Edition),2016,46(1): 286-294.
[1] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[2] 康学远, 施小清, 史良胜, 吴吉春. 基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 848-859.
[3] 刘仁强, 段永刚, 谭锋奇, 刘红现, 屈怀林. 用试井资料研究低渗透裂缝性油藏渗流模式及演化特征——以准噶尔盆地火烧山油田为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 610-616.
[4] 赵军, 代新雲, 古莉, 祁新忠, 陈伟中. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版), 2016, 46(1): 279-285.
[5] 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294.
[6] 王军, 崔红庄, 戴俊生, 季宗镇. 接触变质带中冷凝收缩缝裂缝参数定量研究[J]. J4, 2012, 42(1): 58-65.
[7] 黄玉龙, 王璞珺, 邵锐. 火山碎屑岩的储层物性--以松辽盆地营城组为例[J]. J4, 2010, 40(2): 227-236.
[8] 秦玉英, 陈付虎, 王福平. 综合压裂技术在低压致密气藏储层中的研究与应用[J]. J4, 2009, 39(3): 503-506.
[9] 刘万洙,庞彦明,吴河勇,高有峰,门广田,任延广. 松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J]. J4, 2007, 37(4): 698-0702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!