吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1562-1571.doi: 10.13278/j.cnki.jjuese.201705304

• 地球探测与信息技术 • 上一篇    下一篇

基于局部均值分解的地震信号时频分解方法

张雪冰, 刘财, 刘洋, 王典, 勾福岩   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2016-12-07 出版日期:2017-09-26 发布日期:2017-09-26
  • 通讯作者: 刘洋(1979),男,教授,博士生导师,主要从事地震数据处理、海洋电磁数据处理和地质-地球物理综合研究等方面的研究,E-mail:yangliu1979@jlu.edu.cn E-mail:yangliu1979@jlu.edu.cn
  • 作者简介:张雪冰(1987),男,博士研究生,主要从事地震数据处理等方面的研究,E-mail:zzzhxb@126.com
  • 基金资助:
    国家自然科学基金项目(41522404,41430322)

Seismic Data Time-Frequency Decomposition Based on Local Mean Decomposition

Zhang Xuebing, Liu Cai, Liu Yang, Wang Dian, Gou Fuyan   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-12-07 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41522404, 41430322)

摘要: 在分析地震资料时,因吸收和衰减等原因,地震信号往往呈现出非稳态性。时频分解方法能将地震信号分解成多个稳态的子成分,从而为描述和分析地震信号的属性提供了便利,如短时傅里叶变换、小波分析、经验模式分解(EMD)等方法。本文引入了一种新的时频分析方法——局部均值分解(LMD)。该方法将地震信号按其时频属性分解成多个乘积分量信号(PFs),较EMD分解所得的固有模态函数(IMFs)保留了更多的局部信息,同时模态混叠效应更少。对模型数据和实际数据的处理结果验证了LMD方法能够合理地分解地震信号,更准确地描述地震资料中不同时间尺度的构造信息,为进一步的地震数据处理和解释提供参考。

关键词: 局部均值分解, 经验模式分解, 时频分解

Abstract: In seismic data analysis, it is a general case that seismic signal always displays nonstationary characteristics because of wave-attenuation effects. By time-frequency decomposition methods, such as short-time Fourier transform, wavelet transform, and empirical mode decomposition, seismic data can be decomposed into a set of stationary components, which are easier to be processed and interpreted. Following this idea, the paper introduces a new method named local mean decomposition (LMD). The LMD method can decompose seismic data into several product functions (PFs). Compared with the intrinsic mode functions (IMFs) by the EMD method, the PFs preserves more details and the mode mixing effect is weaker. The applications to model data and field data show that the LMD method can make the decomposition more properly, and capture the local character of seismic data from different time points.

Key words: local mean decomposition, empirical mode decomposition, time-frequency decomposition

中图分类号: 

  • P631.4
[1] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of the Royal Society of London:Series A:Mathematical, Physical and Engineering Sciences, 1998, 454:903-995.
[2] Fomel S. Seismic Data Decomposition into Spectral Components Using Regularized Nonstationary Autoregression[J]. Geophysics, 2013, 78 (6):O69-O76.
[3] Liu J, Marfurt K. Instantaneous Spectral Attributes to Detect Channels[J]. Geophysics, 2007, 72 (2):P23-P31.
[4] Ebrom D. The Low-Frequency Gas Shadow on Seismic Sections[J]. The Leading Edge, 2004, 23 (8):772.
[5] Gabor D. Theory of Communication[J]. Journal of the Institute of Electrical Engineers, 1946, 93 (26):429-441.
[6] Chakraborty A, Okaya D. Frequency-Time Decom-position of Seismic Data Using Wavelet-Based Methods[J]. Geophysics, 1995, 60 (6):1906-1916.
[7] Sinha S, Routh P, Anno P, et al. Spectral Decom-position of Seismic Data with Continuous Wavelet Transform[J]. Geophysics, 2005, 70 (6):P19-P25.
[8] Pinnegar C R, Mansinha L. The S-Transform with Windows of Arbitrary and Varying Shape[J]. Geophysics, 2003, 68 (1):381-385.
[9] Stockwell R G, Mansinha L, Lowe R P. Localization of the Complex Spectrum:The S Transform[J]. IEEE Transactions on Signal Processing, 1996, 44 (4):998-1001.
[10] Liu Y, Fomel S. Seismic Data Analysis Using Local Time-Frequency Decomposition[J]. Geophysical Prospecting, 2013, 61 (3):516-525.
[11] 刘洋, 李炳秀, 刘财, 等. 局部时频变换域地震波吸收衰减补偿方法[J]. 吉林大学学报(地球科学版), 2016, 46 (2):594-602. Liu Yang, Li Bingxiu, Liu Cai, et al. Attenuation Compensation Method of Seismic Wave in the Local Time-Frequency Transform Domain[J]. Journal of Jilin University (Earth Science Edition), 2016, 46 (2):594-602.
[12] Chen Y, Fomel S. Emd-Seislet Transform[C]//SEG New Orleans 2015 Annual Meeting. New Orleans:SEG, 2015:4775-4778.
[13] Han J, Baan M V D. Empirical Mode Decomposition for Seismic Time-Frequency Analysis[J]. Geophysics, 2013, 78 (2):O9-O19.
[14] Pi H, Liu C, Wang D. Using Hilbert-Huang Trans-form to Pick up Instantaneous Parameters of Seismic Signal[J]. Oil Geophysical Prospecting, 2007, 42 (4):418-424.
[15] Wen X, He Z, Huang D. Reservoir Detection Based on EMD and Correlation Dimension[J]. Appl Geophys, 2009, 6(1):70-76.
[16] Wu Z, Huang N E. Ensemble Empirical Mode De-composition:A Noise-Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1):1-41.
[17] Smith J S. The Local Mean Decomposition and Its Application to EEG Perception Data[J]. Journal of the Royal Society Interface, 2005, 2 (5):443-454.
[18] Dai H, Xu A. A Comparative Study on Estimation of Instantaneous Frequency by Means of Lmd[C]//IEEE International Conference on Information and Automation. Yinchuan:IEEE, 2013:964-969.
[19] Wang W, Zhang W H, Han J G, et al. A New Wind Turbine Fault Diagnosis Method Based on the Local Mean Decomposition[J]. Renewable Energy, 2012, 48 (6):411-415.
[20] 程军圣, 张亢, 杨宇. 基于噪声辅助分析的总体局部均值分解方法[J]. 机械工程学报, 2011, 47 (3):55-62. Cheng Junsheng, Zhang Kang, Yang Yu. Ensemble Local Mean Decomposition Method Based on Noise-Assisted Analysis[J]. Chinese Journal of Mechanical Engineering, 2011, 47 (3):55-62.
[21] Herrera R H, Tary J B, Baan MV D. Time-Fre-quency Representation of Microseismic Signals Using the Synchrosqueezing Transform[C]//Geoconvention. Calgary:CSEG, 2013:
[22] Liu G, Fomel S, Chen X. Time-Frequency Analysis of Seismic Data Using Local Attributes[J]. Geophysics, 2011, 76 (6):P23-P34.
[1] 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259.
[2] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
[3] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[4] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[5] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[6] 胡宁, 刘财. 分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 900-908.
[7] 周进举, 王德利, 李博文, 李强, 王睿. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 909-921.
[8] 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899.
[9] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[10] 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363.
[11] 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383.
[12] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[13] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[14] 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565.
[15] 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!