吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1589-1619.doi: 10.13278/j.cnki.jjuese.201706101

• 地质与资源 •    下一篇

辽东半岛东南部南辽河群变质火山岩的时代、成因及其对区域构造演化的制约

孟恩1, 王朝阳1, 刘超辉1, 施建荣2, 李艳广3   

  1. 1. 中国地质科学院地质研究所, 北京 100037;
    2. 中国地质调查局天津地质调查中心, 天津 300170;
    3. 中国地质调查局西安地质调查中心, 西安 710054
  • 收稿日期:2017-09-23 出版日期:2017-11-26 发布日期:2017-11-26
  • 作者简介:孟恩(1982-),男,副研究员,主要从事岩石成因和前寒武地质学研究,E-mail:mengen0416@126.com
  • 基金资助:
    国家自然科学基金项目(41572169,40725007,41202136);中国地质调查局项目(12120114021601,12120114021401,12120114061901)

Geochronology, Petrogenesis and Constraints on Regional Tectonic Evolution of the Meta-Volcanic Rocks in Southeastern Liaodong Peninsula

Meng En1, Wang Chaoyang1, Liu Chaohui1, Shi Jianrong2, Li Yanguang3   

  1. 1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China;
    3. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
  • Received:2017-09-23 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41572169, 40725007, 41202136) and Project of China Geological Survey(12120114021601, 12120114021401, 12120114061901)

摘要: 辽东半岛东南部地区出露大面积南辽河群变质表壳岩系,其下部尤以广泛发育变质火山岩为特征。本文通过对黑云斜长片麻岩、斜长角闪岩以及黑云母变粒岩等岩石系统的岩石学、全岩地球化学研究,并结合锆石U-Pb年代学以及Lu-Hf的研究结果来制约其物质组成、原岩形成和变质时代、岩石成因及形成环境,进而探讨胶-辽-吉活动带的大地构造属性。锆石显微结构、微区成分及LA-ICP-MS U-Pb年代学分析结果表明,研究区南辽河群变质火山岩原岩可能形成于2.19 Ga左右,并记录了1.90 Ga左右的变质事件。元素和同位素地球化学分析结果表明,其原岩以玄武安山岩-安山岩和英安岩及少量的流纹岩为主,主体属于亚碱性系列,具有钙碱性演化趋势。其中,基性端元以相对较低的SiO2质量分数,富集MgO、TFe2O3和轻稀土元素(LREE)及Cr、Co和Ni为特征,强烈亏损重稀土元素(HREE)和高场强元素(HFSE,如Nb、Ta和Ti),岩浆应起源于受俯冲流体或熔体交代的亏损岩石圈地幔楔;而中-酸性端元则具有高的SiO2质量分数和较低的MgO、TFe2O3质量分数,富碱,富集Ba、Th、U和K,以及亏损Nb、Ta、P和Ti等特征,应来自于新生地壳物质的部分熔融。结合区域地质资料表明,南辽河群变质火山岩应形成于一个典型的活动大陆边缘的构造环境,暗示胶-辽-吉活动带北段古元古代中期以前的形成演化机制应与弧-陆碰撞作用有关。

关键词: 古元古代南辽河群, 变质火山岩, 岩石成因, 构造环境, 胶-辽-吉活动带

Abstract: The Paleoproterozoic meta-supracrustal rocks, known as the South Liaohe Group, is widely exposed in the southeast of Liaodong Peninsula. Its lower part is characterized by the extensive metavolcanic rocks. In this paper, we study the petrology and whole-rock geochemical data of the biotite plagioclase gneiss, amphibolite, and biotite leptynites, as well as the U-Pb dating and Lu-Hf isotope data of the zircons in these rocks. The aim is to restrict the petrogenesis of Jiao-Liao-Ji belt by researching their composition, the ages of formation and metamorphism of the protolith, and the petrogenesis. The structure, composition, and U-Pb ages of zircon indicate that the protoliths of the metavolcanic rocks in South Liaohe Group were formed at ca. 2.19 Ga, and they were affected by metamorphic events at 1.90 Ga. The element and isotope geochemical analysis show that the protoliths of these rocks were basaltic andesite-andesite, dacite, and minor rhyolite; most of them belong to sub-alkaline affinities with calc-alkaline evolution. The basic rocks have relatively low SiO2 contents, enriched in MgO, TFe2O3, and light rare-earth elements(LREE), Cr, Co, and Ni, while depleted of heavy rare-earth elements(HREE) and high-field strength elements(HFSE, such as Nb, Ta and Ti), indicating a derivation from a partial melting of a depleted lithospheric mantle that had been altered by the fluids or melts derived from a subducted slab. However, the intermediate acid rocks have high contents of SiO2 and low contents of MgO and TFe2O3, enriched in alkalis, Ba, Th, U and K, while depleted of Nb, Ta, P and Ti, indicating that the acidic rocks could have been derived from a partial melting of juvenile crust. Taking into account the regional geology, we consider that the metavolcanic rocks of the South Liaohe Group formed under an active continental margin, and the evolution of the northern segment of the Jiao-Liao-Ji belt was related to an arc-continent collision before the middle Paleoproterozoic.

Key words: Paleoproterozoic South Liaohe Group, metavolcanic, petrogenesis, tectonic setting, Jiao-Liao-Ji belt

中图分类号: 

  • P588.3
[1] Liu D Y, Nutman A P, Compston W, et al. Remnants of >3800 Ma Crust in the Chinese Part of the Sino-Korean Craton[J]. Geology, 1992, 20(4):339-342.
[2] 刘敦一,万渝生,伍家善,等. 华北克拉通太古宙地壳演化和最古老的岩石[J]. 地质通报, 2007, 26(9):1131-1138. Liu Dunyi, Wan Yusheng, Wu Jiashan, et al. Archean Crustal Evolution and the Oldest Rocks in the North China Craton[J]. Geological Bulletin of China, 2007, 26(9):1131-1138.
[3] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton:Key Issues And Discussion[J]. Precambrian Research, 2012, 222/223(12):55-76.
[4] Kusky T M, Li J H. Paleoproterozoic Tectonic Evo-lution of the North China Craton[J]. Journal of Asian Earth Sciences, 2004, 22(4):383-397.
[5] 翟明国,彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报, 2007, 23(11):2665-2682. Zhai Mingguo, Peng Peng. Paleoproterozoic Events in North China Craton[J]. Acta Petrologica Sinica, 2007, 23(11):2665-2682.
[6] Santosh M, Kusky T. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens:A Ridge Subduction and Slab Window Model[J]. Terra Nova, 2010, 22(1):35-42.
[7] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J]. Precambrian Research, 2005, 136(2):177-202.
[8] Zhai M G, Santosh M. The Early Precambrian Ody-ssey of the North China Craton:A Synoptic Overview[J]. Gondwana Research, 2011, 20(1):6-25.
[9] Li S Z, Zhao G C, Santosh M, et al. Palaeoproterozoic Tectono-Thermal Evolution and Deep Crustal Processes in the Jiao-Liao-Ji Belt, North China craton:A Review[J]. Geological Journal, 2011, 46(6):525-543.
[10] 王惠初,陆松年,初航,等. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景[J]. 吉林大学学报(地学科学版), 2011, 41(5):1322-1334. Wang Huichu, Lu Songnian, Chu Hang, et al. Zircon U-PbAge and Tectonic Setting of Meta-basalts of Liaohe Group in Helan Area, Liaoyang, Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(5):1322-1334.
[11] Xia X P, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Jining Complex, North China Craton and Its Tectonic Significance[J]. Precambrian Research, 2006, 144(3/4):199-212.
[12] Xia X P, Sun M, Zhao G C, et al. Paleoprote-Rozoic Crustal Growth Events in the Western Block of the North China Craton:Evidence from Detrital Zircon Hf and Whole Rock Sr-Nd Isotopes of the Khondalites in the Jining Complex[J]. American Journal of Science, 2008, 308(3):304-327.
[13] Xia X P, Sun M, Zhao G C, et al. U-Pb and Hf Isotopic Study of Detrital Zircons from the Luliang Khondalite, North China Craton, and Their Tectonic Implications[J]. Geological Magazine, 2009, 146(5):701-716.
[14] Yin C Q, Zhao G C, Guo J H, et al. U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex:Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Lithos, 2011, 122(1/2):25-38.
[15] Yin C Q, Zhao G C, Sun M, et al. LA-ICP-MS U-Pb Zircon Ages of the Qianlishan Complex:Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research, 2009, 174(1/2):78-94.
[16] Yin C Q, Zhao G C, Wei C J, et al. Metamorphism and Partial Melting of High-Pressure Pelitic Granulites from the Qianlishan Complex:Constraints on the Tectonic Evolution of the Khondalite Belt in the North China Craton[J]. Precambrian Research, 2014, 242(3):172-186.
[17] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 2009, 25(8):1772-1792. Zhao Guochun. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton:Key Issues and Discussion[J]. Acta Petrologica Sinica, 2009, 25(8):1772-1792.
[18] Zhao G C, Sun M, Wilde S A, et al. Assembly, Acc-retion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton[J]. Gondwana Research, 2003, 6(3):417-434.
[19] Zhao G C, Wilde S A, Guo J, et al. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4):266-276.
[20] Kröner A, Wilde S A, Zhao G C, et al. Zircon Geo-chronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146(1/2):45-67.
[21] Liu S W, Zhao G C, Wilde S A, et al. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes:Constraints on the Tectonothermal Evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3):205-225.
[22] Wilde S A, Zhao G C. Archean to Paleoproterozoic Evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24:519-522.
[23] Wilde S A, Zhao G C, Sun M. Development of the North China Craton During the Late Archaean and Its Final Amalgamation at 1.8 Ga:Some Speculations on Its Position Within a Global Palaeoproterozoic Supercontinent[J]. Gondwana Research, 2002, 5(1):85-94.
[24] Zhang J, Zhao G C, Sun M, et al. High-Pressure Mafic Granulites in the Trans-North China Orogen:Tectonic Significance and Age[J]. Gondwana Research, 2006, 9(3):349-362.
[25] Zhang J, Zhao G C, Li S Z, et al. Deformation History of the Hengshan Complex:Implications for the Tectonic Evolution of the Trans-North China Orogen[J]. Journal of Structural Geology, 2007, 29(6):933-949.
[26] Zhang J, Zhao G C, Li S Z, et al. Polyphase Deformation of the Fuping Complex, Trans-North China Orogen:Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications[J]. Journal of Structural Geology, 2009, 31(2):177-193.
[27] Zhang J, Zhao G C, Shen W L, et al.Structural Pattern of the Wutai Complex and Its Constraints on the Tectonic Framework of the Trans-North China Orogen[J]. Precambrian Research, 2012, 222/223(6):212-229.
[28] Zhang J, Zhao G C, Shen W L, et al. Aeromagnetic Study of the HengShan-Wutai-Fuping Region:Unraveling a Crustal Profile of the Paleoproterozoic Trans-North China Orogen[J]. Tectonophysics, 2015, 662:208-218.
[29] Zhao G C, Cawood P A, Wilde S A, et al. Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent[J]. Earth Science Reviews, 2002, 59(1/2/3/4):125-162.
[30] Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-PbZircon Ages of Granitoid Rocks in the Lüliang Complex:Implications for the Accretion and Evolution of the Trans-North China Orogen[J]. Precambrian Research, 2008, 160(3):213-226.
[31] Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Custal Accretion and Collision of the Trans-North China Orogen[J]. Geochimica et Cosmochimica Acta, 2012, 70(18):270-303.
[32] Li S Z, Zhao G C, Sun M, et al. NotAll the Liaoji Granitoids Are Paleoproterozoic:Evidence from SHRIMP U-Pb Zircon Ages[J]. International Geology Review, 2004, 46:162-176.
[33] 白瑾,戴凤岩,郭进京,等. 中国前寒武纪地壳演化[M]. 北京:地质出版社, 1998:65-84. Bai Jin, Dai Fengyan, Guo Jinjing, et al. Precambrian Crust Evolution of China[M].Beijing:Geological Publishing House, 1998:65-84.
[34] 陈斌,李壮,王家林,等. 辽东半岛~2.2Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(2):303-320. Chen Bin, Li Zhuang, Wang Jialin, et al. Liaodong Peninsula~2.2 Ga Magmatic Event andIts Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2):303-320.
[35] Faure M, Lin W, Moni P, et al. PaleoproterozoicArc Magmatism and Collision in Liaodong Peninsula, NE China[J]. Terra Nova, 2004, 16(2):75-80.
[36] Li Z, Chen B. Geochronology and Geochemistry of the Paleoproterozoicmeta-Basalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for Petrogenesis and Tectonic Setting[J]. Precambrian Research, 2014, 255:653-667.
[37] 李壮,陈斌,刘经纬,等. 辽东半岛南辽河群锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2015, 31(6):1589-1605. Li Zhuang, Chen Bin, Liu Jingwei, et al. Zircon U-Pb Ages and Their Implications for the South Liaohe Group in the Liaodong Peninsula, Northeast China[J]. Acta Petrologica Sinica, 2015, 31(6):1589-1605.
[38] Lu X P, Wu F Y, Guo J H, et al. Zircon U-Pb Geochronological Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block in the North China Craton[J]. Precambrian Research, 2006, 146(3):138-164.
[39] Meng E, Liu F L, Liu P H, et al. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and in Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry[J]. Precambrian Research, 2014, 247(1):92-109.
[40] 王惠初,任云伟,陆松年,等. 辽吉古元古代造山带的地层单元划分与构造属性[J]. 地球学报, 2015, 36(5):583-598. Wang Huichu, Ren Yunwei, Lu Songnian, et al. Stratigraphic Units and Tectonic Setting of the Paleoproterozoic Liao-Ji Orogen[J]. Acta Geoscientica Sinica, 2015, 36(5):583-598.
[41] 贺高品,叶慧文. 辽东-吉南地区早元古代变质地体的组成及主要特征[J]. 长春科技大学学报, 1998, 28(2):121-126. He Gaopin, Ye Huiwen. Compositions and Main Characteristics of Early Proterozoic Metamorphic Terrains in the Eastern Liaoning and the Southern Jilin Areas[J]. Journal of Changchun University Science and Techonology, 1998, 28(2):121-126.
[42] 贺高品,叶慧文. 辽东吉南地区早元古代两种类型变质作用及其构造意义[J]. 岩石学报, 1998, 14(2):152-162. He Gaopin, Ye Huiwen. Two Types of Early Proterozoic Metamorphism in the Eastern Liaoning and Southern Jilin Provinces and Their Tectonic Implications[J]. Acta Petrologica Sinica, 1998, 14(2):152-162.
[43] 郝德峰,李三忠,赵国春,等. 辽吉地区古元古代花岗岩成因及其对构造演化的制约[J]. 岩石学报, 2004, 20(6):1409-1416. Hao Defeng, Li Sanzhong, Zhao Guochun, et al. Origin andIts Constraint to Tectonic Evolution of Paleoproterozoic Granitoids in the Eastern Liaoning and Jilin Province, North China[J]. Acta Petrologica Sinica, 2004, 20(6):1409-1416.
[44] Li S Z, Zhao G C, Sun M, et al. Deformation His-tory of the Paleoproterozoic Liaohe Group in the Eastern Block of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):659-674.
[45] Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe Groups Different Exotic Terranes? Nd Isotope Constraints on the Jiao-Liao-Ji Orogen[J]. Gondwana Research, 2006, 9(1/2):198-208.
[46] Luo Y, Sun M, Zhao G C, et al. A Comparison of U-Pb and Hf Isotopic Compositions of Detrital Zircons from the North and South Liaohe Groups:Constraints on the Evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2008, 163(3/4):279-306.
[47] Luo Y, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb Zircon Ages of the Liaohe Group in the Eastern Block of the North China Craton:Constraints on the Evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134(3/4):349-371.
[48] Peng Q M, Palmer M R. The Palaeoproterozoic Boron Deposits in Eastern Liaoning, China:A Metamorphosed Evaporite[J]. Precambrian Research, 1995, 72(72):185-197.
[49] 张秋生,杨振升,刘连登. 辽东半岛早期地壳演化与矿产[M]. 北京:地质出版社, 1988. Zhang Qiusheng, Yang Zhensheng, Liu Liandeng. Early Crust and Mineral Deposits of Liaodong Peninsula[M]. Beijing:Geological Publishing House, 1988.
[50] 路孝平,吴福元,林景仟,等. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 2004, 39(1):123-138. Lu Xiaoping, Wu Fuyuan, Lin Jingqian, et al. Geochronological Successions of the Early Precambrian Granitic Magmatism in Southern Liaoning Peninsula and Its Constraints on Tectonic Evolution of the North China Craton[J]. Chinese Journal of Geology, 2004, 39(1):123-138.
[51] 路孝平,吴福元,张艳斌,等. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景[J]. 岩石学报, 2004, 20(3):381-392. Lu Xiaoping, Wu Fuyuan, Zhang Yanbin, et al. Emplacement Age and Tectonic Setting of the Paleoproterozoic Liaoji Granites in Tonghua Area, Southern Jilin Province[J]. Acta Petrologica Sinica, 2004, 20(3):381-392.
[52] Meng E, Wang C Y, Yang H, et al. Paleoproterozoic Metavolcanic Rocks in the Ji'an Group and Constraints on the Formation and Evolution of the Northern Segment of the Jiao-Liao-Ji Belt, China[J]. Precambrian Research, 2017, 294:133-50.
[53] 廖鑫,张晓晖,金胜贤,等. 朝鲜半岛古元古代摩天岭群的碎屑锆石U-Pb年龄及其地质意义[J]. 岩石学报, 2016, 32(10):2981-2992. Liao Xin, Zhang Xiaohui, Jin Shengxian, et al. Detrital Zircon U-Pb Ages of the Machollyong Group in Korean Peninsula:Regional Correlation and Tectonic Implications[J]. Acta Petrologica Sinica, 2016, 32(10):2981-2992.
[54] Meng E, Wang C Y, Li Y G, et al. Zircon U-Pb-Hf Isotopic And Whole-Rock Geochemical Studies of Paleoproterozoic Metasedimentary Rocks in the Northern Segment of the Jiao-Liao-Ji Belt, China:Implications for Provenance and Regional Tectonic Evolution[J]. Precambrian Research, 2017, 298:472-489.
[55] Meng E, Wang C Y, Li Z, et al. Paleoproterozoic Metasedimentary Rocks of the Ji'an Group and Their Significance for the Tectonic Evolution of the Northern Segment of the Jiao-Liao-Ji Belt, North China Craton[J/OL]. Geological Magazine, 2017:1-25.Doi. https://doi.org/10.1017/S0016756817000632.
[56] Li S Z, Zhao G C, Liu X, et al. Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2012, 200(4):59-73.
[57] Zhao G C, Guo J H. Precambrian Geology of China:Preface[J]. Precambrian Research, 2012, 222/223:1-12.
[58] Zhai M G, Santosh M. Metallogeny of the North China Craton:Link withSecular Changes in the Evolving Earth[J]. Gondwana Research, 2013, 24(1):275-297.
[59] 吉林省地质矿产局. 吉林省区域地质志[M]. 北京:地质出版社, 1991. Jilin Bureau of Geology and Mineral Resources. Regional Geology of Jilin Province[M]. Beijing:Geological Publishing House, 1991.
[60] 辽宁省地质矿产局. 辽宁省区域地质志[M]. 北京:地质出版社,1989:6-324. Liaoning Bureau of Geology and Mineral Resources. Regional Geology of Liaoning Province[M]. Beijing:Geological Publishing House, 1989:6-324.
[61] 山东省地质矿产局.山东省区域地质志[M]. 北京:地质出版社, 1988. Shandong Bureau of Geology and Mineral Resources. Regional Geology of Shandong Province[M]. Beijing:Geological Publishing House, 1988.
[62] 卢良兆. 胶辽地块早前寒武纪变质地质与构造演化[J]. 长春地质学院学报, 1996, 26(6):25-32. Lu Liangzhao. The Precambrian Metamorphic Geology and Tectonic Evolution of the Jiao-Liao Massif[J]. Journal of Changchun University Science and Techonology, 1996, 26(6):25-32.
[63] 林强,吴福元,刘树文.等. 华北地台东部太古宙花岗岩[M]. 北京:科学出版社, 1992:220. Lin Qiang, Wu Fuyuan, Liu Shuwen, et al. Archean Granites in Eastern North China Craton[M]. Beijing:Science Press, 1992:220.
[64] 许保良,阎国翰,牟保垒. 辽宁盖县梁屯-矿洞沟碱性正长岩Rb-Sr年龄及其意义[J]. 科学通报, 1998, 43(17):1885-1887. Xu Baoliang, Yan Guohan, Mu Baolei. Rb-Sr Age of the Kuangdonggou Alkaline Syenite in Gaixian, Liaoning Province, And Its Significance[J]. Chinese Science Bulletin, 1998, 43(17):1885-1887.
[65] 路孝平,吴福元,郭敬辉,等. 通化地区古元古代晚期花岗质岩浆作用与地壳演化[J]. 岩石学报, 2005, 21(3):721-736. Lu Xiaoping, Wu Fuyuan, Guo Jinghui, et al. Late Paleoproterozoic Granitic Magmatism and Crustal Evolution in Tonghua Region, Northeast China[J]. Acta Petrology Sinica, 2005, 21(3):721-736.
[66] Lu X P, Wu F Y, Guo J H, et al. Zircon U-Pb Geochronological Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block in the North China Craton[J]. Precambrian Research, 2006, 146(3):138-164.
[67] Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for A Major Late Palaeoproterozoic Tectonothermal Event[J]. Precambrian Research, 2006, 149(3/4):249-271.
[68] Zhao G C, Cao L, Wilde S A, et al. Implications Based on the First SHRIMP U-Pb Zircon Dating on Precambrian Granitoid Rocks in North Korea[J]. Earth and Planetary Science Letters, 2006, 251(3/4):365-379.
[69] 杨进辉,吴福元,谢烈文,等. 辽东矿洞沟正长岩成因及其构造意义:锆石原位微区U-Pb年龄和Hf同位素制约[J]. 岩石学报, 2007, 23(2):263-276. Yang Jinhui, Wu Fuyuan, Xie Liewen, et al. Petrogenesis and Tectonic Implications of Kuangdonggou Syenites in the Liaodong Peninsula, East North China Craton:Constraints from In-Situ Zircon U-Pb Ages and Hf Isotopes[J]. Acta Petrologica Sinica, 2007, 23(2):263-276.
[70] Wang C Y, Meng E, Li Y G, et al. Petrogenesis and Tectonic Significance of Paleoproterozoic Granitic Rocks of the Southeastern Liaodong Peninsula, Northeast China[J/OL]. Geological Journal, 2017, 1-25.Doi:10.1002/gj.3038.
[71] 李三忠,郝德峰,韩宗珠,等. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 2003,77(3):318-340. Li Sanzhong, Hao Defeng, Han Zongzhu, et al. Paleoproterozoic Tectonothermal Evolution and Deep Crustal Processes of the Jiao-Liao Block[J]. Acta Geologica Sinica, 2003, 77(3):318-340.
[72] 刘俊来,崔迎春,关会梅. 辽吉朝褶皱带古元古宙岩浆核杂岩及其大地构造意义[J]. 地质通报, 2002, 21(增刊1):202-206. Liu Junlai, Cui Yingchun, Guan Huimei. Magmatic Core Complex in the Liaoning-Jilin-Korea Paleoproterozoic Fold Belt and Its Tectonic Significance[J]. Geological Bulletin of China, 2002, 21(Sup.1):202-206.
[73] Anderson T. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[74] Ludwig. Users manual for Isoplot/Ex(rev. 2. 49):A Geochronological Toolkit for Micrisoft Excel[Z].Berkeley:Berkeley Geochronology Center, Special Publication, 2001:1-55.
[75] Song S, Niu Y, Wei C, et al. Metamorphism,Ana-texis, Zircon Ages and Tectonic Evolution of the Gongshan Block in the Northern Indochina Continent:An Eastern Extension of the Lhasa Block[J]. Lithos, 2010, 120(3/4):327-346.
[76] Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[77] Wu F Y, Yang Y H, Xie L W. HfIsotopic Com-positions of Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126.
[78] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[79] Blichert-Toft, Albarède. The Lu-Hf Isotope Geo-chemistry of Chondrite and the Evolution of the Mantle-Crust System[J]. Earth and Planetary Science Letters, 1997, 148(1/2):243-258.
[80] Griffin W L, Pearson N J, Belousonva E, et al. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
[81] Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell, 1985:312.
[82] Bhatia M R, Crook A W. Trace Element Characte-ristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins[J]. Mineralogy and Petrology, 1986, 92(2):181-193.
[83] McLennan S M, Taylor S R, McCulloch M T. Geo-chemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites:Crystal Evolution and Plate Tectonic Associations[J]. Geochimica Et Cosmochimica Acta, 1990, 54(7):2015-2050.
[84] Irvine T N, Baragar W R A. AGuide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548.
[85] Kelemen P B, Hangh J K, Greene A R. 3.18-One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust[J]. Treatise on Geochemistry, 2007, 138:1-70.
[86] Boynton W V. Cosmochemistry of the Rare Earth Elements:Meteorite Studies[J].Developments in Geochemistry, 1984, 2(2):63-114.
[87] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345.
[88] Dubińska E, Bylina P, Kozłowski A. U-Pb Dating of Serpentinization:Hydrothermal Zircon from a Metasomatic Rodingite Shell(Sudetic ophiolite, SW Poland)[J]. Chemical Geology, 2004, 203(3/4):183-203.
[89] Tomaschek F. Zircons from Syros, Cyclades, Greece-Recrystallization and Mobilization of Zircon During High Pressure Metamorphism[J]. Journal of Petrology, 2003, 44(11):1977-2002.
[90] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous Zircon:TraceElement Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622.
[91] Hoskin P W O, Ireland T R. RareEarth Element Chemistry of Zircon and Its Use as a Provenance Indicator[J]. Geology, 2000, 28(7):627-630.
[92] Zeh A, Gerdes A, Barton J M J. Archean Accretion and Crustal Evolution of the Kalahari Cratonc:The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc[J]. Journal of Petroleum Geology, 2009, 50(5):933-966.
[93] Guo B R, Liu S W, Zhang J, et al. Zircon U-Pb-Hf Isotope Systematics and Geochemistry of Helong Granite-Greenstone Belt in Southern Jilin Province, China:Implications for Neoarchean Crustal Evolution of the Northeastern Margin of North China Craton[J]. Precambrian Research, 2015, 271:254-277.
[94] 李富强,董永胜,王鹏森,等. 南辽河群斜长角闪岩的地球化学特征及地质意义:以三家子地区为例[J]. 世界地质, 2017, 36(1):82-92. Li Fuqiang, Dong Yongsheng, Wang Pengsen, et al. Geochemical Characteristics of Amphibolite of South Liaohe Group and Their Geological Significance:A Case Study of Sanjiazi Area[J]. Global Geology, 2017, 36(1):82-92.
[95] Yuan L L, Zhang X H, Xue F H, et al. Two Episodes of Paleoproterozoic Mafic Intrusions from Liaoning Province, North China Craton:Petrogenesis and Tectonic Implications[J]. Precambrian Research, 2015, 264:119-139.
[96] 刘福来,刘平华,王舫,等. 胶-辽-吉古元古代造山/活动带巨量变质沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10):2816-2846. Liu Fulai, Liu Pinghua, Wang Fang, et al. Progresses and Overviews of Voluminous Meta-Sedimentary Series Within the Paleoproterozoic Jiao-Liao-Ji Orogenic/Mobile Belt, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10):2816-2846.
[97] 吴福元,李秋立,杨正赫,等. 朝鲜北部狼林地块构造归属与地壳形成时代[J]. 岩石学报, 2016, 32(10):2933-2947. Wu Fuyuan, Li Qiuli, Yang Zhenghe, et al. Crustal Growth and Evolution of the Rangrim Massif, Northern Korean Peninsula[J]. Acta Petrologica Sinica, 2016, 32(10):2933-2947.
[98] Yin A, Nie S. A Phanerozoic Palinspastic Reconstru-ction of China and Its Neighboring Regions in Tectonic Evolution of Asia[M]. Oxford:Oxford University Press, 1996:45-97.
[99] 吴春林,张福生,张厚江. 辽宁省的孔兹岩系[J]. 建材地质, 1997(3):11-13. Wu Chunlin, Zhang Fusheng, Zhang Houjiang. The Khondalite Series in Liaoning Province[J]. Journal of Building Materials Geology, 1997(3):11-13.
[100] Wan Y S, Liu D Y, Song B, et al. Geochemical and NdIsotopic Compositions of 3.8 Ga Meta-Quartz Dioritic and Trondhjemitic Rocks from the Anshan Area and Their Geological Significance[J]. Journal of Asian Earth Sciences, 2005, 24(5):563-575.
[101] Miao L, Qiu Y, Fan W, et al. Geology,Geochro-nology, and Tectonic Setting of the Jiapigou Gold Deposits, Southern Jilin Province, China[J]. Ore Geology Reviews, 2005, 26(1):137-165.
[102] Grant M L, Wilde S A, Wu F Y, et al. The Application of Zircon Cathodoluminescence Imaging, Th-U-Pb Chemistry and U-Pb Ages in Interpreting Discrete Magmatic and High-Grade Metamorphic Events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology, 2009, 261(1):155-171.
[103] 白翔, 刘树文, 阎明,等. 抚顺南部早前寒武纪变质杂岩的地质事件序列[J]. 岩石学报, 2014, 30(10):2905-2924. Bai Xiang, Liu Shuwen, Yan Ming, et al. GeologicalEvent Series of Early Precambrian Metamorphic Complex in South Fushun Area, Liaoning Province[J]. Acta Petrologica Sinica, 2014, 30(10):2905-2924.
[104] Saunders A D, Storey M, Kent R W, et al. Con-sequences of Plume-Lithosphere Interactions[J]. Geological Society of London Special Publications, 1992, 68(1):41-60.
[105] Ionov D A, Gregoire M, Prikhod V S. Feldspar-Ti-Oxide Metasomatism in Off-Cratonic Continental and Oceanic Upper Mantle[J]. Earth and Planetary Science Letters, 1999, 165:37-44.
[106] Jahn B M, Wu F Y, Chen B. Granitoids of the Cen-tral Asian Orogenic Belt and Continental Growth in the Phanerozoic[J]. Special Paper of the Geological Society of America, 2000, 350:181-193.
[107] Gill J B. Orogenic Andesites and Plate Tectonics[J]. Mineralogical Magazine, 1981, 46:277-278.
[108] Rudnick R L, Fountain D M. Nature and Com-position of the Continental Crust:A Lower Crustal Perspective[J]. Reviews of Geophysics, 1995, 33(3):267-309.
[109] Gao S, Luo T C, Zhang B R, et al. Chemical Composition of the Continental Crust as Revealed by Studies in East China[J]. Geochim et Cosmochim Acta, 1998, 62(11):1959-1975.
[110] Wilson M. Igneous Petrogenesis:A Global App-roach[M].[s.l.]:Springer, 1989:117-143.
[111] Fretzdorff S, Livermore R A, Devey C W, et al. Petrogenesis of theBack-Arc East Scotia Ridge, South Atlantic Ocean[J]. Journal of Petrology, 2002, 43(8):1435-1467.
[112] Frost B R, Barnes C, Collins W j, et al. A Geo-chemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11):2033-2048.
[113] Geist D, Howard K A, Larson P. The Generation of Oceanic Rhyolites by Crystal Fractionation:The Basalt-rhyolite Association at Volcano Alcedo, Galapagos Archipelago[J]. Journal of Petrology, 1995, 36(4):965-982.
[114] Ikeda Y, Yuasa M. Volcanism in Nascent Backarc Basins Behind the Schichito Ridge and Adjacent Areas in the Izu-Ogasawara Arc, NW Pacific; Evidence for Mixing Between E-Type MORB and Island Arc Magmas at the Initiation of Back-Arc Rifing[J]. Contributions to Mineralogy and Petrology, 1989, 101(4):377-393.
[115] Pearce J A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries[M]. London:John Wiley & Sons, International Thomson Business Press, 1982:525-548.
[116] Pearce J A. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins[J]. Continental Basalts and Mantle Xenoliths, 1983, 147(6):2162-2173.
[117] Sun M, Armstrong R L, Lambert R S, et al. Petrochemistry and Sr, Pb and Nd Istopic Geochemistry of Palaeoproterozoic Kundian Complex in the Eastern Liaoning Province, China[J]. Precambrian Research, 1993, 62(1/2):171-190.
[118] 吴福元,葛文春,孙德有,等. 吉林南部太古代花岗岩Sm-Nd,Rb-Sr同位素年龄测定[J]. 岩石学报, 1997, 13(4):499-506. Wu Fuyuan, Ge Wenchun, Sun Deyou, et al. The Sm-Nd, Rb-Sr Isotopic Ages of the Archean Granites in Southern Jilin Provinve[J]. Acta Petrologica Sinica, 1997, 13(4):499-506.
[119] 孙景贵,林强,葛文春. 辽宁金州地区太古宙英云闪长岩体的变形与侵位的构造环境[J]. 吉林地质, 1992(4):48-49. Sun Jinggui, Lin Qiang, Ge Wenchun. The Deformation of the Archean Tonalite Bodies in JinZhou Ares, Liaoning Province and the Tectonic Environment of Emplacement[J]. Jilin Geoloy, 1992(4):48-49.
[1] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[2] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[3] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[4] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[5] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[6] 孙珍军, 孙国胜, 于赫楠, 向柱, 田毅, 刘彤, 陈旭, 李杨. 赤峰撰山子花岗岩年代学、地球化学特征及其成岩动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1740-1753.
[7] 陈斌, 李壮, 王家林, 张璐, 鄢雪龙. 辽东半岛~2.2 Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 303-320.
[8] 田陟贤, 李永军, 田猛, 杨高学, 向坤鹏, 佟丽莉. 西准噶尔恰达地区哈尔加乌组火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(1): 135-145.
[9] 陈广俊,孙丰月,李碧乐,王冠,钱烨,许庆林,刘国才. 东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2014, 44(3): 892-904.
[10] 夏昭德,姜常义,凌锦兰. 新疆笔架山早二叠世火山岩带岩石成因:来自岩石学、地球化学及同位素年代学的制约[J]. 吉林大学学报(地球科学版), 2014, 44(3): 817-834.
[11] 王冠,孙丰月,李碧乐,李世金,赵俊伟,杨启安. 东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(3): 876-891.
[12] 刘书生,范文玉,罗茂金,唐发伟,朱华平,陈文峰. 老挝南部帕莱通双峰式火山岩锆石U-Pb定年及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(2): 540-553.
[13] 温升福,刘曼丽,刘玮,李瑞磊,苟军,武鹏飞,王天豪,柳小明,孙德有. 松辽盆地长岭断陷中基性火山岩的时代与其成因[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1762-1771.
[14] 覃小锋,王宗起,曹洁,冯佐海,胡贵昂,潘罗忠. 桂南钦防构造带西南段印支早期花岗岩的成因:年代学和地球化学约束[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1471-1488.
[15] 孟凡超, 刘嘉麒,崔岩. 松辽盆地徐家围子断陷营城组粗面岩成因与隐爆机制[J]. 吉林大学学报(地球科学版), 2013, 43(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!