吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1109-1120.doi: 10.13278/j.cnki.jjuese.20180076

• 地质工程与环境工程 • 上一篇    下一篇

中新天津生态城孔隙水化学垂向分布及其成因

曹阳1, 申月芳1, 焦志亮2, 翟远征3, 杨耀栋1   

  1. 1. 天津市地质矿产测试中心, 天津 300191;
    2. 天津市勘察院, 天津 300191;
    3. 北京师范大学水科学研究院, 北京 100875
  • 收稿日期:2018-05-12 出版日期:2019-07-26 发布日期:2019-07-26
  • 通讯作者: 翟远征(1983-),男,副教授,博士,主要从事地下水水化学演化、同位素水文地质学和地下水污染风险相关研究,E-mail:diszyz@163.com E-mail:diszyz@163.com
  • 作者简介:曹阳(1983-),女,博士,主要从事地下水环境演化、水文地球化学相关研究,E-mail:caoy84@163.com
  • 基金资助:
    国家自然科学基金项目(41877174);中国地质科学院水文地质环境地质研究所联合开放基金(KF201510);天津市矿产资源补偿费项目(国土房任[2014]22)

Pore Water Vertical Chemistry Distribution and Origin Analysis in Sino-Singapore Tianjin Eco-City

Cao Yang1, Shen Yuefang1, Jiao Zhiliang2, Zhai Yuanzheng3, Yang Yaodong1   

  1. 1. Tianjin Geological Mineral Testing Center, Tianjin 300191, China;
    2. Tianjin Institute of Geotechnical Investigation Surveying, Tianjin 300191, China;
    3. College of Water Sciences, Beijing Normal University, Beijing 100875, China
  • Received:2018-05-12 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41877174),Joint Foundation of Key Laboratory of Institute of Hydrogeology and Environmental Geology, CAGS (KF201510) and Tianjin Mineral Resources Compensation Project(File[2014]22)

摘要: 中新天津生态城是典型的海岸带建设城市,其复杂的水文地质条件制约着地下空间建设。为查清地下空间水质的垂向分布情况,利用中新天津生态城11个深度为40.0 m的钻孔采取不同深度的原状土样,并采用气体压榨法得到土样中的孔隙水样品,对孔隙水的pH值,总硬度,TDS、K+、Na+、Ca2+、Mg2+、CO32-、HCO3-、SO42-、Cl-、Sr、Br质量浓度,Cl/Br,γNa/γCl及87Sr/86Sr等水化学和同位素参数进行了测试分析。结果显示,孔隙水中水化学成分的质量浓度存在显著的垂向差异(最大相差4倍):受潮滩生卤影响,北部除HCO3-外,其他所有离子最大质量浓度出现在地下5.0 m左右;受地表水影响,中部与南部Cl-最大质量浓度出现在埋深15.0 m左右,其余离子分布规律与Cl-基本一致。水化学和同位素特征联合表明,埋深小于20.0 m的孔隙水表现出明显的现代海水特征,说明其主要受现代海水影响;埋深大于20.0 m的孔隙水化学特征受现代海水和水岩相互作用综合影响,且受古沉积水影响明显。

关键词: 孔隙水, 水化学特征, 垂向分布, 成因分析, 中新天津生态城

Abstract: The Sino-Singapore Tianjin Eco-city is a typical coastal city. Its complex hydrogeological conditions restrict the construction of underground space. In order to find out the vertical distribution of underground water quality, soil samples were collected from 40 m boreholes. The pore water in the core was obtained through gas squeezing. pH, total hardness, TDS, K +, Na +, Ca2 +, CO32-, HCO3-, SO42-, Cl-, Sr, Br, Cl/Br,γNa/γCl and 87Sr/86Sr were used to discuss the chemical characteristics and influence factors of pore-water. The results show that the vertical mass concentration is significantly different in chemical composition of pore water, the highest value is four times of the lowest one. In the northern area, affected by brines formed by seawater evaporation on coastal beach, the ion maximum concentration (except HCO3-) appears in the depth of 5.0 m underground; while in the central and southern area, affected by surface water, the maximum of Cl-appears in the depth of about 15.0 m, and those of other ions are similar. The pore water within 20.0 m shows the obvious characteristics of modern seawater. The pore water chemistry below 20.0 m is controlled by water and rock interactions, and is significantly affected by paleo-sedimentary seawater.

Key words: pore water, hydrochemistry characteristics, vertical distribution, genetic analysis, Sino-Singapore Tianjin Eco-City

中图分类号: 

  • P641
[1] Nagao S, Yanase N, Yamamoto M, et al. The Geochemistry of Uranium in Pore Waters from Lake Sediments[J]. Journal of Radioanalytical & Nuclear Chemistry, 2002, 252(2):225-232.
[2] Jiang Tao, Xie Xinong, Chen Hui, et al. Geochemistry of Pore Water and Associated Diagenetic Reactions in the Diapiric Area of Yinggehai Basin, Northwestern South China Sea[J]. Journal of Earth Science, 2015, 26(3):306-316.
[3] Twidwell L, Gammons C H, Young C A, et al. Summary of Deepwater Sediment/Pore Water Characterization for the Metal-Laden Berkeley Pit Lake in Butte, Montana[J]. Mine Water & the Environment, 2006, 25(2):86-92.
[4] Lent R M, Lyons W B. Porewater Geochemistry and Solute Flux from Bottom Sediments, Devils Lake, North Dakota[J]. International Journal of Salt Lake Research, 1994, 3(2):113-135.
[5] 蒋少涌, 杨涛, 薛紫晨, 等. 南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J]. 现代地质, 2005, 19(1):45-54. Jiang Shaoyong, Yang Tao, Xue Zichen, et al. Chlorine and Sulfate Concentrations in Pore Waters from Marine Sedmients in the North Margin of the South China Sea and Their Implications for Gashydrate Exploration[J]. Geoscience, 2005, 19(1):45-54.
[6] 李静, 梁杏, 陈乃嘉, 等. 地球化学模拟方法确定黏性土孔隙水化学组分[J]. 水文地质工程地质, 2017, 44(1):1-8. Li Jing, Liang Xing, Chen Naijia, et al. Determination of Chemical Compositions of Pore Water in Clay-Rich Formations Using Geochemical Modeling[J]. Hydrogeology & Engineering Geology, 2017, 44(1):1-8.
[7] 李静, 梁杏, 毛绪美, 等. 水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义[J]. 地球科学, 2012, 37(3):612-620. Li Jing, Liang Xing, Mao Xumei, et al. Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate[J]. Earth Science, 2012, 37(3):612-620.
[8] 张宗祜, 施德鸿, 沈照理, 等. 人类活动影响下华北平原地下水环境的演化与发展[J]. 地球学报, 1997, 18(4):337-344. Zhang Zonghu, Shi Dehong, Shen Zhaoli, et al. Evolution and Development of Groundwater Environment in North China Plain Under Human Activities[J]. Acta Geoscientica Sinica, 1997, 18(4):337-344.
[9] 曹阳, 滕彦国, 刘昀竺. 宁夏吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球科学版), 2013, 43(1):235-244. Cao Yang, Teng Yanguo, Liu Yunzhu. Multivariate Statistical Approach to Identify Influencing Factors of Groundwater Quality in Jinji Water Source of Wuzhong City[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1):235-244
[10] 郭高轩, 侯泉林, 许亮,等. 北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 2014, 35(2):204-210. Guo Gaoxuan, Hou Quanlin, Xu Liang, et al. Delamination and Zoning Characteristics of Quaternary Groundwater in Chaobai Alluvial-Proluvial Fan, Beijing, Based on Hydrochemical Analysis[J]. Acta Geoscientica Sinica, 2014, 35(2):204-210.
[11] 章程, 汪进良, 蒲俊兵. 地下河出口河流水化学昼夜动态变化:生物地球化学过程的控制[J]. 地球学报, 2015, 36(2):197-203. Zhang Cheng, Wang Jinliang, Pu Junbing. Diel Aqueous Chemical Cycling in a Typical Karst Spring-Fed Stream:Controls of Biogeochemical Processes[J]. Acta Geoscientica Sinica, 2015, 36(2):197-203.
[12] 董维红, 孟莹, 王雨山,等. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2):542-553. Dong Weihong, Meng Ying, Wang Yushan, et al. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin Sanjiang Plain[J]. Journal of Jilin University, 2017, 47(2):542-553.
[13] 岩石中铅、锶、铷同位素测定方法:GB/T 17672-1999[S].北京:中国标准出版社, 1999. Determination for Isotopes of Lead, Strontium and Neodymium in Rock Samples:GB/T 17672-1999[S]. Beijing:Standards Press of China, 1999.
[14] 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察, 1983(6):6-11. Wang Ruijiu. Three Line Diagram and Its Hydrological Geological Interpretation[J]. Geotechnical Investigation & Surveying, 1983(6):6-11.
[15] 王珍岩, 韩有松. 第四纪滨海相地下卤水的研究[J]. 海洋科学, 1998, 22(1):22-24. Wang Zhenyan, Han Yousong. The Geotechnical Properties of the Shallow Soil Layers of the Southern Bohai Gulf and Their Ralationship with the Sedimentary Facies in the Area[J]. Marine Sciences, 1998, 22(1):22-24.
[16] 林耀庭, 姚有成, 康正华, 等. 四川宣达盐盆富钾富矿卤水地球化学特征及资源意义研究[J]. 盐湖研究, 2004, 12(1):8-18. Lin Yaoting, Yao Youcheng, Kang Zhenghua, et al. Study on the Geochemical Characteristics and Resource Significance of the Highlymineralized Potassium-Rich Brine in the Sichuan Xuanda Salt Basin[J]. Journal of Salt Lake Research, 2004, 12(1):8-18.
[17] 曹琴, 周训, 张欢, 等. 四川盆地卧龙河储卤构造地下卤水的水化学特征及成因[J]. 地质通报, 2015, 34(5):990-997. Cao Qin, Zhou Xun, Zhang Huan, et al. Hydrochemical Characteristics and Genesis of the Subsurface Brines in the Wolonghe Brine-Bearing Structure of Sichuan Basin[J]. Geological Bulletin of China, 2015, 34(5):990-997.
[18] 苏小四, 吴春勇, 董维红, 等. 鄂尔多斯沙漠高原白垩系地下水锶同位素的演化机理[J]. 成都理工大学学报(自然科学版), 2011, 38(3):348-358. Su Xiaosi, Wu Chunyong, Dong Weihong, et al. Strontium Isotope Evolution Mechanism of the Cretaceous Groundwater in Ordos Desert Plateau[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(3):348-358.
[19] Klaus J S, Hansen B T, Buapeng S.87Sr/86Sr Ratio:A Natural Tracer to Monitor Groundwater Flow Paths During Artificial Recharge in the Bangkok Area, Thailand[J]. Hydrogeology Journal, 2007, 15(4):745-758.
[20] Jørgensen N O, Banoeng-Yakubo B K. Environmental Isotopes (18O,2H, and 87Sr/86Sr) as a Tool in Groundwater Investigations in the Keta Basin, Ghana[J]. Hydrogeology Journal, 2001, 9(2):190-201.
[21] Ian Cartwright, Weaver Tamie, Petrides Ben. Controls on87Sr/86Sr Ratios of Groundwater in Silicate-Dominated Aquifers:SE Murray Basin, Australia[J]. Chemical Geology, 2007, 246(1):107-123.
[22] 杨郧城, 文冬光, 侯光才, 等. 鄂尔多斯白垩系自流水盆地地下水锶同位素特征及其水文学意义[J]. 地质学报, 2007, 81(3):405-412. Yang Yuncheng, Weng Dongguang, Hou Guangcai, et al. Characteristic of Strontium Isotope of Groundwater and Its Application on Hydrology in the Ordos Cretaceous Artesian Basin[J]. Acta Geologica Sinica, 2007, 81(3):405-412.
[23] 曹阳, 杨耀栋, 申月芳, 等. 天津中新生态城地下水质空间分布特征及腐蚀性评价与试验研究成果报告[R]. 天津:天津市地质矿产测试中心, 2016. Cao Yang, Yang Yaodong, Shen Yuefang, et al. Report on the Spatial Distribution Characteristics of Groundwater Quality and Its Corrosivity Evaluation and Experimental Research in Sino-Singapore Tianjin Eco-City[R]. Tianjin:Tianjin Geological Mineral Testing Center, 2016.
[1] 洪勇, 周蓉, 郑孝玉, 凌贤长. 不同排水条件下砂-黄土界面的剪切力学特性[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1073-1081.
[2] 洪勇, 周蓉, 郑孝玉. 不同排水条件下饱和砂土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1416-1426.
[3] 王昱翔, 周文, 郭睿, 伏美燕, 沈忠民, 赵丽敏, 陈文玲. 伊拉克哈勒法耶油田Mishrif组滩相储层特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1007-1020.
[4] 赵权利,尚岳全,支墨墨. 平推式滑坡启动判据的修正[J]. 吉林大学学报(地球科学版), 2014, 44(2): 596-602.
[5] 沈宇鹏, 冯瑞玲, 余江, 刘辉. 增压式真空预压处理软基的加固机理[J]. J4, 2012, 42(3): 792-797.
[6] 汤洁, 张楠, 李昭阳, 毛子龙, 李娜, 徐小明, 韩维峥. 吉林西部不同土地利用类型的土壤有机碳垂向分布和碳密度[J]. J4, 2011, 41(4): 1151-1156.
[7] 闫春岭, 唐益群, 王元东, 李仁杰. 循环荷载下加固土体孔压的模糊正交试验分析[J]. J4, 2011, 41(3): 805-811.
[8] 范伟, 杨悦锁, 冶雪艳, 路莹. 青肯泡地区地下水中锶富集的水文地球化学环境特征及成因分析[J]. J4, 2010, 40(2): 349-355.
[9] 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318.
[10] 许中杰,刘万洙,丁日新,王加强. 九台营城煤矿区珍珠岩特征、成因及储层地质意义[J]. J4, 2007, 37(6): 1139-1145.
[11] 吴春勇,王剑平,李景林,王清,史彬. 超深方块码头稳定性的离心模型试验[J]. J4, 2006, 36(03): 399-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[2] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[3] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[4] 田 梦,张梅生,任延广,乔秀云,万传彪,刘鹏举. 松辽盆地新站地区嫩江组三段孢粉-藻类组合及其环境[J]. J4, 2005, 35(04): 449 -0455 .
[5] 程日辉,王璞珺,刘万洙,单玄龙,陈树民,曲永保. 徐家围子断陷火山岩充填的层序地层[J]. J4, 2005, 35(04): 469 -0474 .
[6] 冷曦晨,佴 磊,亓 宾. 桩基承载力模拟试验中相似性问题[J]. J4, 2005, 35(04): 491 -0495 .
[7] 钦丽娟,曹剑峰,平建华,姜纪沂,王 楠,沈媛媛,李 升. 模糊数学在郑州市水资源价值评价中的应用[J]. J4, 2005, 35(04): 487 -0490 .
[8] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[9] 戴志阳,孙建国,查显杰. 地震波场模拟中的褶积微分算子法[J]. J4, 2005, 35(04): 520 -0524 .
[10] 吴新伟,刘正宏,徐仲元. 大青山逆冲推覆构造带中劈理特征及其成因[J]. J4, 2005, 35(05): 564 -569 .