吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1596-1602.doi: 10.13278/j.cnki.jjuese.20180159

• 中国水利学会勘测专业委员会专栏 • 上一篇    

基于模糊综合评判的护盾式TBM施工围岩稳定性分类

杨继华1, 路新景1, 闫长斌2, 齐三红1, 郭卫新1   

  1. 1. 黄河勘测规划设计有限公司, 郑州 450003;
    2. 郑州大学土木工程学院, 郑州 450001
  • 收稿日期:2018-06-01 发布日期:2018-11-20
  • 作者简介:杨继华(1980-),男,高级工程师,博士,主要从事岩土工程勘察、设计与研究工作,E-mail:yangjihua68@sohu.com
  • 基金资助:
    国家自然科学基金项目(U1504523);河南省重点研发与推广专项(182102210014);黄河勘测规划设计有限公司自主研发项目(2016-ky56(2))

Stability Classification of Tunnel Surrounding Rock During Shield TBM Construction Based on Fuzzy Comprehensive Evaluation

Yang Jihua1, Lu Xinjing1, Yan Changbin2, Qi Sanhong1, Guo Weixin1   

  1. 1. Yellow River Engineering Consulting Co., Ltd, Zhengzhou 450003, China;
    2. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2018-06-01 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China (U1504523), Key Science and Technology Research Project of Henan (182102210014) and Independent Research and Development Project of Yellow River Engineering Consulting Co., Ltd(2016-ky56(2))

摘要: 针对传统分类方法难以对围岩稳定性进行评价的问题,以护盾式全断面隧掘进机(TBM)施工隧洞的围岩稳定性评价为目标,在研究护盾式TBM施工特点的基础上,参照国内、外常用的围岩分类方法,选择了岩石的回弹值、刀盘推力、刀盘扭矩、片状岩渣含量、地下水渗流量和最大主应力与洞轴线的夹角作为围岩稳定性评判因素。采用模糊综合评判方法,建立围岩稳定性多因素评判模型,通过确定评判因素的权重向量选取隶属函数,进而对围岩稳定性进行定量评判,并将之应用到某工程双护盾TBM施工的围岩稳定性评判中。结果表明:序号1、2、3和4洞段对应的较稳定、较稳定、局部稳定性差和不稳定的最大隶属度分别为0.494、0.403、0.388、0.442,分别对应Ⅱ、Ⅱ、Ⅲ和Ⅳ类围岩;模糊综合评判方法合理,评判结果较为可靠。研究成果对护盾式TBM施工的围岩稳定性评价、围岩分类及支护方式选择等具有参考价值。

关键词: 隧洞, 护盾式TBM, 围岩稳定性, 模糊综合评判

Abstract: Considering the difficulty of the traditional method in the classification and evaluation of surrounding rock stability of TBM tunnel, a new system of stability classification of the surrounding rock with shield TBM tunnel is developed. Based on the characters of a shield TBM construction and some regular classification methods, the evaluation factors were selected, including rock rebound value, cutterhead thrust, cutterhead torque, content of rock chips cut by TBM, groundwater flow and angle between the maximum principal stress and the tunnel axis. The multi-factor model of a stability analysis of surrounding rock was established by using fuzzy comprehensive evaluation method. The surrounding rock stability was quantitatively assessed by determining weight vector of impact factors and by selecting membership functions. This method was applied to the stability evaluation of tunnel surrounding rocks during a double shield TBM construction. The results showed that the tunnel sections of No. 1, 2, 3 and 4 were relatively stable, relatively stable, local stabile, and instable respectively. Their maximum membership degrees were 0.494, 0.403, 0.388, and 0.442, corresponding to the surrounding rocks of Ⅱ, Ⅱ, Ⅲ and Ⅳ. The developed method based on fuzzy comprehensive evaluation is reasonable, and the evaluation result is reliable. The research results have reference value for surrounding rock stability evaluation, surrounding rock classification, and support mode selection of shield TBM construction.

Key words: tunnel, shield TBM, surrounding rock stability, fuzzy-synthetical evaluation

中图分类号: 

  • U451.2
[1] 张镜剑, 傅冰骏. 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报, 2007, 26(2):226-238. Zhang Jingjian, Fu Bingjun. Advances in Tunnel Boring Machine Application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2):226-238.
[2] 张镜剑. TBM的应用及其有关问题和展望[J]. 岩石力学与工程学报, 1999, 18(3):363-367. Zhang Jingjian. The Application and Some Problems of TBM and Its Prospects[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3):363-367.
[3] 尹俊涛, 尚彦军, 傅冰骏, 等. TBM掘进技术发展及有关工程地质问题分析和对策[J]. 工程地质学报, 2005, 13(3):389-397. Yin Juntao, Shang Yanjun, Fu Bingjun, et al. Development of TBM-Excavation Technology and Analyses & Countermeasures of Related Engineering Geological Problems[J]. Journal of Engineering Geology, 2005, 13(3):389-397.
[4] 茅承觉. 我国全断面岩石掘进机(TBM)发展的回顾与思考[J]. 建设机械技术与管理, 2008, 21(5):81-84. Mao Chengjue. Review and Thoughts of Developmental Full Face Rock Tunnel Boring Machine(TBM) in China[J]. Construction Machinery Technology & Management, 2008, 21(5):81-84.
[5] Bieniaski Z T. Classification of Rock Masses for Engineering[M]. New York:Wiley, 1993.
[6] Barton N. Some New Q-Value Correlations to Assist in Site Characterization and Tunnel Design[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39:185-216.
[7] 工程岩体分级标准GB50218-2014[S]. 北京:中国计划出版社,2014. Standard for Classification of Engineering Rock Masses GB50218-94[S]. Beijing:China Planning Press, 1994.
[8] 水利水电工程地质勘察规范GB50487-2008[S]. 北京:中国计划出版社,2009. Code for Geologic Investigation of Water Resources and Hydropower Engineering GB50487-2008[S]. Beijing:China Planning Press, 2009.
[9] 黄祥志. 基于渣料和TBM掘进参数的围岩稳定性分类方法研究[D]. 武汉:武汉大学, 2005. Huang Xiangzhi. The Research of the Methods of Surrounding Rock Masses Stability Classification Based on the Geological Documentation of Muck and the Boring Parameters of TBM[D]. Wuhan:Wuhan University, 2005.
[10] 黄扬一. 万安工程建基岩体回弹仪测试结果[J]. 大坝观测与土工测试, 1996, 20(3):39-42. Huang Yangyi. Schmidt Hammer in Foundation of Wan'an Dam[J]. Dam Observation and Geotechnical Tests, 1996, 20(3):39-42.
[11] 尚彦军, 杨志法, 李丽慧, 等. 黑洞大型古地下洞室群工程地质条件及岩体稳定性分析[J]. 吉林大学学报(地球科学版), 2015, 45(1):214-224. Shang Yanjun, Yang Zhifa, Li Lihui, et al. Study of the Engineering Geological Conditions and Rock Mass Stability of Heidong Large Ancient Underground Caverns[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1):214-224.
[12] 张鹏, 陈剑平, 张丽, 等. 隧道围岩断面轮廓分维数与岩体质量关系[J]. 吉林大学学报(地球科学版), 2010, 40(5):1110-1114. Zhang Peng, Chen Jianping, Zhang Li, et al. Relationship Between Fractal Dimension of Section Profile & Rock Quality of Tunnel Surrounding Rock Mass[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(5):1110-1114.
[13] 许传华, 任青文. 地下工程围岩稳定性的模糊综合评判法[J]. 岩石力学与工程学报, 2004, 23(11):1852-1855. Xu Chuanhua, Ren Qingwen. Fuzzy-Synthetical Evaluation on Stability of Surrounding Rockmassed of Underground Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11):1852-1855.
[14] 盛继亮. 地下工程围岩稳定模糊综合评价模型研究[J]. 岩石力学与工程学报, 2003, 22(增刊1):2418-2421. Sheng Jiliang. Research on Fuzzy Synthetic Evaluation Model for the Stability of Surrounding Rocks of Underground Project[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(Sup.1):2418-2421.
[15] 段瑜. 地下采空区灾害危险度的模糊综合评价[D]. 长沙:中南大学, 2005. Duan Yu. The Fuzzy-Synthetical Evaluation of Goaf Disaster Hazard Degree[D]. Changsha:Central South University, 2005.
[16] 彭祖赠, 孙韫玉. 模糊数学及其应用[M]. 武汉:武汉大学出版社, 2002. Peng Zuzeng, Sun Yunyu. Fuzzy Mathematics and Its Application[M]. Wuhan:Wuhan University Press, 2005.
[17] 卢有杰, 卢家仪. 项目风险管理[M]. 北京:清华大学出版社, 1998. Lu Youjie, Lu Jiayi. Project Risk Management[M]. Beijing:Tsinghua University Press, 1998.
[1] 李志远, 宫海灵, 张永辉, 李璞. 某电站地下厂房裂隙发育规律及其对围岩稳定性的影响[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1574-1580.
[2] 王楠, 曹剑峰, 赵继昌, 李书光. 长春市区浅层地温能开发利用方式适宜性分区评价[J]. J4, 2012, 42(4): 1139-1144.
[3] 沈世伟, 佴磊, 徐燕. 不同权重条件下降雨对边坡稳定性影响的二级模糊综合评判[J]. J4, 2012, 42(3): 777-784.
[4] 郑百功, 佴磊, 汪茜, 陆威. 公路隧道围岩稳定性评价软件开发与应用[J]. J4, 2010, 40(5): 1133-1139.
[5] 安鹏程,陈剑平,邱道宏. 偏压连拱隧道围岩稳定性分析与现场监控量测[J]. J4, 2008, 38(2): 285-0289.
[6] 汤洁,赵凤琴,李昭阳,王晨野. GIS技术支持下的土地盐碱化敏感性评价[J]. J4, 2006, 36(05): 841-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!