吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 845-856.doi: 10.13278/j.cnki.jjuese.20180202

• 地球探测与信息技术 • 上一篇    下一篇

基于数学形态学的位场数据边缘增强方法

张建民1, 胡英飒2, 曾昭发1, 杜威1, 张领1, 槐楠1, 胡志鹏1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 中国核电工程有限公司郑州分公司, 郑州 450012
  • 收稿日期:2018-07-23 出版日期:2019-06-03 发布日期:2019-06-03
  • 通讯作者: 曾昭发(1966-),男,教授,博士生导师,主要从事地球物理方法理论与应用研究,E-mail:zengzf@.jlu.edu.cn E-mail:zengzf@.jlu.edu.cn
  • 作者简介:张建民(1989-),男,博士研究生,主要从事地球物理重磁电数据处理与解释方面的研究,E-mail:717199217@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0600505)

Edge Enhancement Method Based on Mathematical Morphology for Potential Field Data

Zhang Jianmin1, Hu Yingsa2, Zeng Zhaofa1, Du Wei1, Zhang Ling1, Huai Nan1, Hu Zhipeng1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Zhengzhou Branch, China Nuclear Power Engineering Co., Ltd., Zhengzhou 450012, China
  • Received:2018-07-23 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Key Research and Development Program of China (2016YFC0600505)

摘要: 位场数据边缘增强对于地质构造研究和矿床勘查具有重要意义。现有的边缘增强方法多数基于位场数据的导数构建,往往存在对噪声敏感的缺点,且处理结果中常有虚假边界的出现。本文基于数学形态学良好的形状分析和噪声压制性能,通过数学形态学基本算子的组合叠加,提出了一种新的位场数据边缘增强方法。该方法容易实现,且不需要计算位场数据的水平和垂向导数。板状体模型试验结果表明,该方法能有效地对重力异常和化极后的磁异常数据进行边缘增强。针对三维模型试验中正负异常同时存在的情况,相比以往几种方法,该方法输出的边缘更清晰且没有额外边缘的产生,并表现出更强的抗噪能力。最后将该方法和以往几种方法应用到老挝万象地区实际重力异常数据的处理中,结果显示该方法刻画出的边缘更加连续清晰;同时结合以往地质资料,推断了成矿的有利部位。

关键词: 位场数据, 边缘增强, 数学形态学

Abstract: The edge enhancement of potential field data is of great significance for geological structure research and mineral exploration. Most of the existing edge enhancement methods are formed based on the derivatives of potential field data, however, these methods show a poor anti-noise ability,and often result in some false edges. Using the good performance of mathematical morphology on shape analysis and noise suppression, a new edge enhancement method for potential field data is proposed. The method is easy to carry out, and does not need to calculate the horizontal and vertical derivatives of the potential field data. The test results of plate model show that this method can effectively enhance the edges of gravity data and magnetic data after polarization. Compared with several traditional methods, this one can produce clearer edges without additional edges, and has stronger anti-noise ability. Finally, this method and several traditional methods are applied to the actual gravity anomaly data in Vientiane,Laos, and the results show that the edges depicted by this method are more continuous and clearer. At the same time, the favorable metallogenic location is inferred combined with the previous geological data.

Key words: potential field data, edge enhancement, mathematical morphology

中图分类号: 

  • P631
[1] Evjen H M. The Place of the Vertical Gradient in Gravitational Interpretations[J]. Geophysics, 1936, 1(1):127-136.
[2] Hood P J, Teskey D J. Aeromagnetic Gradiometer Program of the Geological Survey of Canada[J]. Geophysics, 1989, 54(8):1012-1022.
[3] Cordell L. Gravimetric Expression of Graben Faulting in Santa Fe Country and the Espanola Basin[C]//Ingersoll R V, Woodward L A, James H. New Mexico Geological Society 30th Annual Fall Field Conference Guidebook.[S. l.]:New Mexico Geological Society, 1979:59-64.
[4] Nabighian M N. The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section:Its Properties and Use for Automated Anomaly Interpretation[J]. Geophysics, 1972, 37(3):507-517.
[5] Roest W R, Verhoef J, Polkington M. Magnetic Interpretation Using the 3-D Analytic Signal[J]. Geophysics, 1992, 57(1):116-125.
[6] Hsu S,Sibuet J C, Shyu C. High-Resolution Detection of Geologic Boundaries from Potential Field Anomalies:An Enhanced Analytic Signal Technique[J]. Geophysics, 1996, 61(2):373-386.
[7] Miller H G, Singh V. Potential Field Tilt:A New Concept for Location of Potential Field Sources[J]. Journal of Applied Geophysics, 1994, 32:213-217.
[8] Verduzco B,Fairhead J D, Green C M. New Insights into Magnetic Derivatives for Structural Mapping[J]. The Leading Edge, 2004, 23(2):116-119.
[9] Wijns C, Perez C, Kowalczy K P. Theta Map:Edge Detection in Magnetic Data[J]. Geophysics, 2005, 70(4):39-43.
[10] Fitz Gerald D J, Holstein H. Innovative Data Processing Methods for Gradient Airborne Geophysical Data Sets[J]. The Leading Edge, 2006, 25(1):87-94.
[11] 杨高印. 位场数据处理的一项新技术:小子域滤波法[J]. 石油地球物理勘探, 1995, 30(2):240-244. Yang Gaoyin. A New Technique for Potential-Field Data Processing:Small Subdomain Filtering[J]. Oil Geophysical Prospecting, 1995, 30(2):240-244.
[12] Cooper G R J, Cowan D R. Edge Enhancement of Potential-Field Data Using Normalized Statistics[J]. Geophysics 2008, 73(3):H1-H4.
[13] Ma G, Li L. EdgeDetection in Potential Fields with the Normalized Total Horizontal Derivative[J]. Computers & Geosciences, 2012, 41:83-87.
[14] 王彦国,张凤旭,王祝文,等. 位场归一化差分法的边界检测技术[J].吉林大学学报(地球科学版),2013, 43(2):592-602. Wang Yanguo, Zhang Fengxu, Wang Zhuwen, et al. Edge Detection of Potential Field Using Normalized Differential[J]. Journal of Jilin University (Earth Science Edition), 2013, 4(2):592-602.
[15] Zhou S, Huang D N, Jiao J. Total Horizontal Derivatives of Potential Field Three Dimensional Structure Tensor and Their Application to Detect Source Edges[J]. Acta Geophysica et Geophysica, 2016, 52(3):1-13.
[16] 周文纳,杜晓娟,李吉炎.改进的角度边界识别方法及其在延吉盆地的应用[J].地球科学:中国地质大学学报,2013, 38(6):1339-1346. Zhou Wenna, Du Xiaojuan, Li Jiyan. Improved Angle Edge Detection Method and Its Application in Yanji Basin[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(6):1339-1346.
[17] Yuan Y, Huang D N, Yu Q, et al. Edge Detection of Potential Field Data with Improved Structure Tensor Methods[J]. Journal of Applied Geophysics, 2014, 108:35-42.
[18] Blakely R J, Simpson R W. Approximating Edges of Source Bodies from Magnetic or Gravity Anomalies[J]. Geophysics, 1986, 51(7):1494-1498.
[19] Serra J. Image Analysis and Mathematical Morphology[M]. New York:Academic Press, 1982.
[20] 张建成, 吴新杰. 形态滤波在实时信号处理中应用的研究[J].传感技术学报,2007, 20(4):828-831. Zhang Jiancheng, Wu Xinjie. Research on Applications of Morphological Filtering in Real-Time Signal Processing[J]. Chinese Journal of Sensors and Actuators, 2007, 20(4):828-831.
[21] 蒋立辉,耿蒙,赵春晖. 基于广义形态滤波和模糊逻辑的散斑噪声抑制[J].红外与激光工程,2005,34(1):80-83. Jiang Lihui, Geng Meng, Zhao Chunhui. Speckle Suppressing Based on Generalized Morphological Filter and Fuzzy Logic[J]. Infrared and Laser Engineering, 2005, 34(1):80-83.
[22] Margos P, San F K. Measuring the Fractal Dimensions of Signals:Morphological Coversand Iiterative Optimization[J]. IEEE Trans on Signal Processing, 1993, 41(1):108-121.
[23] 李兵,张培林,任国全,等. 基于数学形态学的分形维数计算及在轴承故障诊断中的应用[J]. 振动与冲击,2010,29(5):191-194. Li Bing, Zhang Peilin, Ren Guoquan, et al. Mathematic Morphology Based Fractal Dimension Calculation and Its Application in Fault Diagnosis of Roller Bearings[J]. Journal of Vibration and Shock, 2010, 29(5):191-194.
[24] 刘循, 游志胜. 多尺度形态学图像边缘检测方法[J].光电工程, 2003, 30(3):56-58. Liu Xun, You Zhisheng. An Image Edge Detection Method Based on Multi-Scale Morphology[J]. Opto-Electronic Engineering, 2003, 30(3):56-58.
[25] 王慧锋,站桂礼,罗晓明. 基于数学形态学的边缘检测算法研究及应用[J].计算机工程与应用, 2009, 45(9):223-226. Wang Huifeng, Zhan Guili, Luo Xiaoming. Research and Application of Edge Detection Operator Based on Mathematical Morphology[J]. Computer Engineering and Application, 2009, 45(9):223-226.
[26] 李杰, 彭月英, 元昌安, 等. 基于数学形态学细化算法的图像边缘细化[J]. 计算机应用, 2012, 32(2):514-516, 520. Li Jie, Peng Yueying, Yuan Chang'an, et al. Edge Thinning Based on Mathematical Morphology Thinning Algorithm[J]. Journal of Computer Applications, 2012, 32(2):514-516, 520.
[27] 王润秋, 郑桂娟, 付洪洲,等. 地震资料处理中的形态滤波去噪方法[J]. 石油地球物理学报, 2005, 40(3):277-282. Wang Runqiu, Zheng Guijuan, Fu Hongzhou, et al.Noise-Eliminated Method by Morphologic Filtering in Seismic Data Processing[J]. Oil Geophysical Prospecting, 2005, 40(3):277-282.
[28] Faucon T, Decenciere E, Magneron C. Morphological Segmentation Applied to 3D Seismic Data[C]//Ronse C, Najman L, Decencière E. Mathematical Morphology:40 Years on,[s.l.]:Springer,2005:475-484.
[29] 陈辉,郭科,胡英.数学形态学在地震信号处理中的应用研究[J].地球物理学进展, 2009, 24(6):1995-2002. Chen Hui, Guo Ke, Hu Ying. A Study on Application of Mathematical Morphology to Seismic Signal Processing[J]. Progress in Geophysics, 2009, 24(6):1995-2002.
[30] 汤井田, 李晋, 肖晓, 等. 数学形态学滤波与大地电磁噪声压制[J]. 地球物理学报,2012, 55(5):1784-1793. Tang Jingtian, Li Jin, Xiao Xiao, et al. Mathematical Morphology Filtering and Noise Suppression of Magnetotelluric Sounding Data[J]. Chinese Journal of Geophysics, 2012, 55(5), 1784-1793.
[31] Huang W L, Wang R Q, Zhang D, et al.Mathematical Morphological Filtering for Linear Noise Attenuation of Seismic Data[J]. Geophysics, 2017, 82(6):V369-V384.
[32] Huang W L, Wang R Q, Zu S H, et al.Low-Frequency Noise Attenuation in Seismic and Microseismic Data Using Mathematical Morphological Filtering[J]. Geophysical Journal International, 2017, 211(3):1296-1318.
[33] 李振苓, 沈金松, 李曦宁,等. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4):1295-1307. Li Zhenling, Shen Jinsong, Li Xining, et al. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(4):1295-1307.
[34] Li L L, Ma G Q, Du X J. Edge Detection in Potential-Field Data by Enhanced Mathematical Morphology Filter[J]. Pure and Applied Geophysics, 2013, 170(4):645-653.
[35] 邓彩霞, 王贵彬, 杨鑫蕊. 改进的抗噪形态学边缘检测算法[J]. 数据采集与处理, 2013, 28(6):739-745. Deng Caixia, Wang Guibin, Yang Xinrui. Improved Algorithm of Morphology in Edge Detection for Noise Resistance[J]. Journal of Data Acquisition and Processing, 2013, 28(6):739-745.
[36] 同小玲. 基于数学形态学的图像边缘检测算法研究[D]. 西安:长安大学, 2013. Tong Xiaoling. The Research of Image Edge Detection Algorithm Based on Mathematical Morphology[D]. Xi'an:Chang'an University, 2013.
[37] 焦新华, 吴燕冈. 重力与磁法勘探[M]. 北京:地质出版社, 2009:1-328. Jiao Xinhua, Wu Yangang. Gravity and Magnetic Prospecting[M]. Beijing:Geological Publishing House, 2009:1-328.
[38] 赵国兴. 老挝万象地区钾盐矿重力数据处理与解释[D]. 长春:吉林大学, 2017. Zhao Guoxing. The Processing and Interpretation of Gravity Data on the Potash Mine of Vientiane in Laos[D]. Changchun:Jilin University, 2017.
[39] Xu M L, Yang C B, Wu Y G, et al.Edge Detection in the Potential Field Using the Correlation Coefficients of Multidirectional Standard Deviations[J]. Applied Geophysics, 2015, 12(1):23-34.
[1] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!