吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1486-1495.doi: 10.13278/j.cnki.jjuese.20180212

• 地球探测与信息技术 • 上一篇    下一篇

基于MODIS的长江口表层水体盐度时空分异

牛莹1, 赵欣怡1, 周云轩1, 田波1, 王利花2   

  1. 1. 华东师范大学河口海岸学国家重点实验室, 上海 200062;
    2. 成都信息工程大学资源环境学院, 成都 610225
  • 收稿日期:2018-08-13 发布日期:2019-10-10
  • 通讯作者: 周云轩(1962-),男,教授,博士生导师,主要从事长江河口资源与环境、海洋及海岸带遥感等方面的研究,E-mail:zhouyx@sklec.ecnu.edu.cn E-mail:zhouyx@sklec.ecnu.edu.cn
  • 作者简介:牛莹(1994-),女,硕士研究生,主要从事长江河口及海岸带遥感方面的研究,E-mail:gniwen@126.com
  • 基金资助:
    国家自然科学基金项目(41476151)

Sea Surface Salinity Spatio-Temporal Differentiation in Yangtze Estuarine Waters Using MODIS

Niu Ying1, Zhao Xinyi1, Zhou Yunxuan1, Tian Bo1, Wang Lihua2   

  1. 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
    2. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
  • Received:2018-08-13 Published:2019-10-10
  • Supported by:
    Supported by National Natural Science Foundation of China (41476151)

摘要: 长江河口地处海陆交汇地区,其海表盐度受到长江流域、东海和三角洲社会经济活动的复合影响。水体盐度直观反映了河口区域冲淡水分布,对于研究淡水羽状锋、长江物质输送与河口环境变化等具有重要意义。本文分别对枯季和洪季的长江口盐度实测数据,以及中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)遥感反射率与反射率的比值进行拟合回归分析,建立长江口表层盐度反演经验模型,得到枯季的相关系数和均方根误差(root-mean-square error,RMSE)分别为-0.930 3、0.45‰,洪季的相关系数和RMSE分别为-0.818 5、0.88‰;并分析模型在时间尺度上的适用性。利用该盐度反演模型对长江口2007-2016年的表层盐度进行反演,结合大通站记录的长江径流量观测资料,分析长江口表层水体盐度的时空变化规律。结果表明:长江口表层盐度受径流量影响较大,空间上呈自西向东递增趋势,具有季节性分异;枯季近岸盐度较高,高盐度海水可以到达长江口南北支分叉122.5°E附近;洪季冲淡水影响范围广,高盐度海水聚集在123°E以东、31°N以南,长江口北部出现低盐区域;2007-2016年间枯季大通站流量呈上升趋势,平均盐度为29.27‰,总体呈降低趋势,洪季大通站流量呈降低趋势,平均盐度为27.10‰,呈上升趋势,盐度和径流量在年际变化中存在良好的负相关关系。

关键词: MODIS, 长江口, 海表盐度, 径流, 时空分异

Abstract: The Yangtze Estuary is located in the intersection of sea and land, and its sea surface salinity (SSS) is affected by the Yangtze River, East China Sea, and social and economic activities of the delta. Salinity can directly reflect the distribution of freshwater plumes;therefore, the research on the spatial and temporal distribution and variation of the Yangtze River salinity is significant for understanding the importance of freshwater plumes, material transport,and estuarine environment. Terra MODIS (moderate-resolution imaging spectroradiometer) remote sensing reflectance, reflectance ratio and field data in dry and flood seasons were used to establish the experienced retrieval models of the Yangtze Estuary, and their RMSE are 0.45‰ and 0.88‰ respectively. The applicability of the model in time scale was also analyzed. The models were used to retrieve SSS in the Yangtze estuarine waters from 2007 to 2016, combined with the runoff observational data from the Datong gauging station, the temporal and spatial variations of SSS were analyzed. The results showed that the SSS distribution in the Yangtze Estuary appeared increasing from the west to the east, which was deeply influenced by the Yangtze River runoff with obvious seasonal differentiation. The off-shore SSS appeared high in the dry season, with high SSS waters reaching westward 123°E, around the bifurcation of the southern and the northern branches of the Yangtze Estuary. Diluted water influenced a larger area in the flood season, which caused the high SSS waters gathering east of 123°E and south of 31°N, along with a low SSS area in the north of the Yangtze Estuary. The Datong gauging station runoff increased during 2007 to 2016 in the flood season, along with the decrease of the average SSS of the study area, and the average SSS was 29.27‰. The runoff decreased in the dry season, along with the increase of the average SSS, and the average SSS was 27.10‰. The SSS variations during 2007 to 2016 had a negative correlation with runoff.

Key words: MODIS (moderate-resolution imaging spectroradiometer), Yangtze Estuary, sea surface salinity, runoff, spatio-temporal differentiation

中图分类号: 

  • TP79
[1] 李志.海洋表层盐度遥感反演机理及应用研究[D].青岛:中国海洋大学,2008. Li Zhi. The Study of Sea Surface Salinity Retrieval Model at L-Band[D]. Qingdao:Ocean University of China, 2008.
[2] Terray L, Corre L, Cravatte S, et al. Near-Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle[J]. Journal of Climate, 2012, 25(3):958-977.
[3] Korosov A, Counillon F, Johannessen J A. Monitoring the Spreading of the Amazon Freshwater Plume by MODIS, SMOS, A Quarius, and TOPAZ[J]. Journal of Geophysical Research:Oceans, 2015, 120(1):268-283.
[4] Zine S, Boutin J, Waldteufel P, et al. Issues About Retrieving Sea Surface Salinity in Coastal Areas from SMOS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):2061-2072.
[5] Urquhart E A, Zaitchik B F, Hoffman M J, et al. Remotely Sensed Estimates of Surface Salinity in the Chesapeake Bay:A Statistical Approach[J]. Remote Sensing of Environment, 2012, 123:522-531.
[6] Marghany M, Hashim M, Cracknell A P. Modelling Sea Surface Salinity from MODIS Satellite Data[C]//International Conference on Computational Science and Its Applications. Berlin:Springer, 2010:545-556.
[7] Geiger E F, Grossi M D, Trembanis A C, et al. Satellite-Derived Coastal Ocean and Estuarine Salinity in the Mid-Atlantic[J]. Continental Shelf Research, 2013, 63:S235-S242.
[8] Wang J, Deng Z. Development of a MODIS Data Based Algorithm for Retrieving Nearshore Sea Surface Salinity Along the Northern Gulf of Mexico Coast[J]. International Journal of Remote Sensing, 2018, 39(11):3497-3511.
[9] Yu X, Xiao B, Liu X, et al. Retrieval of Remotely Sensed Sea Surface Salinity Using MODIS Data in the Chinese Bohai Sea[J]. International Journal of Remote Sensing, 2017, 38(23):7357-7373.
[10] 丁晓英, 余顺超. 基于遥感的珠江口表层盐度监测研究[J]. 遥感信息, 2014, 29(5):96-100. Ding Xiaoying, Yu Shunchao. Water Salinity in Pearl River Estuary Based on Remote Sensing[J]. Remote Sensing Information, 2014, 29(5):96-100.
[11] Johnson D R, Miller J, Schofield O. Dynamics and Optics of the Hudson River Outflow Plume[J]. Journal of Geophysical Research:Oceans, 2003, 108(C10):3323.
[12] Stedmon C A, Osburn C L, Kragh T. Tracing Water Mass Mixing in the Baltic-North Sea Transition Zone Using the Optical Properties of Coloured Dissolved Organic Matter[J]. Estuarine, Coastal and Shelf Science, 2010, 87(1):156-162.
[13] Bai Y, Pan D, Cai W J, et al. Remote Sensing of Salinity from Satellite-Derived CDOM in the Changjiang River Dominated East China Sea[J]. Journal of Geophysical Research:Oceans, 2013, 118(1):227-243.
[14] 朱建荣, 丁平兴, 胡敦欣. 2000年8月长江口外海区冲淡水和羽状锋的观测[J]. 海洋与湖沼, 2003, 34(3):249-255. Zhu Jianrong, Ding Pingxing, Hu Dunxin. Observation of the Diluted Water and Plume Front off the Changjiang River Estuary During August 2000[J]. Oceanologia et Limnologia Sinica, 2003, 34(3):249-255.
[15] 王永红, Heron M L, Ridd P. 航空微波遥感观测海水表层盐度的研究进展[J]. 海洋地质与第四纪地质, 2007, 27(1):139-145. Wang Yonghong, Heron M L, Ridd P. Progress in Measuring Sea Surface Salinity by Using Airborne Microwave Remote Sensing System[J]. Marine Geology & Quaternary Geology, 2007, 27(1):139-145.
[16] 余小龙. 浑浊海岸水体色素成分的吸收特性测量及其浓度的遥感反演[D]. 上海:华东师范大学, 2013. Yu Xiaolong. Measurements of Pigment Absorption Coefficients and Retrieval Models of Pigment Concentration in Turbid Coastal Waters[D]. Shanghai:East China Normal University, 2013.
[17] Ahmad Z, Franz B A, McClain C R, et al. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans[J]. Applied Optics, 2010, 49(29):5545-5560.
[18] Bailey S W, Werdell P J. A Multi-Sensor Approach for the On-Orbit Validation of Ocean Color Satellite Data Products[J]. Remote Sensing of Environment, 2006, 102(1/2):12-23.
[19] Gordon H R, Wang M. Influence of Oceanic Whitecaps on Atmospheric Correction of Ocean-Color Sensors[J]. Applied Optics, 1994(33):7754-7763.
[20] Thuillier G, Hersé M, Foujols T, et al. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions[J]. Solar Physics, 2003, 214(1):1-22.
[21] Naik P, D'Sa E J, Grippo M, et al. Absorption Properties of Shoal-Dominated Waters in the Atchafalaya Shelf, Louisiana, USA[J]. International Journal of Remote Sensing, 2011, 32(15):4383-4406.
[22] Shanmugam P. New Models for Retrieving and Partitioning the Colored Dissolved Organic Matter in the Global Ocean:Implications for Remote Sensing[J]. Remote Sensing of Environment, 2011, 115(6):1501-1521.
[23] 沈焕庭, 茅志昌, 朱建荣. 长江河口咸水入侵[M]. 北京:海洋出版社, 2003. Shen Huanting, Mao Zhichang, Zhu Jianrong. Saltwater Intrusion at the Mouth of the Yangtze River[M]. Beijing:Ocean Press, 2003.
[24] 韩乃斌. 长江口南支河段氯度变化分析[J]. 水利水运工程学报, 1983(1):77-84. Han Naibin. Analysis of Chlorinity Variation in the Southern Branch of the Yangtze River Estuary[J]. Scientific Research on Water Conservancy and Water Transport, 1983(1):77-84.
[25] 朱建荣, 吴辉, 李路,等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010,4(1):1-6. Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater Intrusion in the Changjiang Estuary in the Extremely Drought Hydrological Year 2006[J]. Journal of East China Normal University (Natural Science), 2010, 4(1):1-6.
[26] 刘兴泉, 尹宝树, 侯一筠. 长江口及其邻近海区环流和温, 盐结构动力学研究:Ⅱ:环流的基本特征[J]. 海洋与湖沼, 2008, 39(4):312-320. Liu Xingquan, Yin Baoshu, Hou Yijun. The Dynamic of Circulation and Temperature-Salinity Structure in the Changjiang Mouth and Its Adjacent Marine Area:Ⅱ:Major Characteristics of the Circulation[J]. Oceanologia et Limnologia Sinica, 2008, 39(4):312-320.
[27] 赵军凯, 李九发, 戴志军, 等. 长江宜昌站径流变化过程分析[J]. 资源科学, 2012, 34(12):2306-2315. Zhao Junkai, Li Jiufa, Dai Zhijun, et al. Analysis the Runoff Variotion of Yangtze River in Yichang[J]. Resources Science, 2012, 34(12):2306-2315.
[28] 王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1):226-233. Wang Lihua, Zhou Yunxuan. Driving Factors Analysis on Evolution of Water and Sediment at Datong Station[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):226-233.
[1] 张爽, 曾献奎, 吴吉春. 提孜那甫河流域融雪径流模拟及不确定性分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1415-1424.
[2] 魏伟, 周云轩, 田波, 钱伟伟, 湛玉剑, 黄盖先. 基于地面激光扫描的典型海岸带盐沼潮滩地形反演[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1889-1897.
[3] 牛军宜, 吴泽宁, 贾虎. 降水丰枯变化和产流条件改变对汾河径流影响的定量研究[J]. 吉林大学学报(地球科学版), 2016, 46(3): 814-823.
[4] 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1): 240-246.
[5] 李鸿雁,田琪,王小军,王红瑞,于文泉. 嫩江流域径流时空演化规律分析[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1282-1289.
[6] 刘奎, 庄振业, 刘东雁, 叶银灿. 舟山群岛和长江口邻近海域埋藏古河道水文环境特征[J]. J4, 2010, 40(1): 140-147.
[7] 鲁程鹏, 束龙仓, 苑利波, 张蓉蓉, 黄币娟, 王彬彬. 基于示踪试验求解岩溶含水层水文地质参数[J]. J4, 2009, 39(4): 717-721.
[8] 孙平安, 林年丰, 李昭阳, 汤洁, 汪雪格. 松嫩平原水土保持价值复合计算模型的建立及应用[J]. J4, 2006, 36(03): 433-442.
[9] 郑宗生,周云轩,沈 芳. GIS支持下长江口深水航道治理一、二期工程对北槽拦门沙的影响分析[J]. J4, 2006, 36(01): 85-0090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!