吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1486-1495.doi: 10.13278/j.cnki.jjuese.20180212
牛莹1, 赵欣怡1, 周云轩1, 田波1, 王利花2
Niu Ying1, Zhao Xinyi1, Zhou Yunxuan1, Tian Bo1, Wang Lihua2
摘要: 长江河口地处海陆交汇地区,其海表盐度受到长江流域、东海和三角洲社会经济活动的复合影响。水体盐度直观反映了河口区域冲淡水分布,对于研究淡水羽状锋、长江物质输送与河口环境变化等具有重要意义。本文分别对枯季和洪季的长江口盐度实测数据,以及中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)遥感反射率与反射率的比值进行拟合回归分析,建立长江口表层盐度反演经验模型,得到枯季的相关系数和均方根误差(root-mean-square error,RMSE)分别为-0.930 3、0.45‰,洪季的相关系数和RMSE分别为-0.818 5、0.88‰;并分析模型在时间尺度上的适用性。利用该盐度反演模型对长江口2007-2016年的表层盐度进行反演,结合大通站记录的长江径流量观测资料,分析长江口表层水体盐度的时空变化规律。结果表明:长江口表层盐度受径流量影响较大,空间上呈自西向东递增趋势,具有季节性分异;枯季近岸盐度较高,高盐度海水可以到达长江口南北支分叉122.5°E附近;洪季冲淡水影响范围广,高盐度海水聚集在123°E以东、31°N以南,长江口北部出现低盐区域;2007-2016年间枯季大通站流量呈上升趋势,平均盐度为29.27‰,总体呈降低趋势,洪季大通站流量呈降低趋势,平均盐度为27.10‰,呈上升趋势,盐度和径流量在年际变化中存在良好的负相关关系。
中图分类号:
[1] 李志.海洋表层盐度遥感反演机理及应用研究[D].青岛:中国海洋大学,2008. Li Zhi. The Study of Sea Surface Salinity Retrieval Model at L-Band[D]. Qingdao:Ocean University of China, 2008. [2] Terray L, Corre L, Cravatte S, et al. Near-Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle[J]. Journal of Climate, 2012, 25(3):958-977. [3] Korosov A, Counillon F, Johannessen J A. Monitoring the Spreading of the Amazon Freshwater Plume by MODIS, SMOS, A Quarius, and TOPAZ[J]. Journal of Geophysical Research:Oceans, 2015, 120(1):268-283. [4] Zine S, Boutin J, Waldteufel P, et al. Issues About Retrieving Sea Surface Salinity in Coastal Areas from SMOS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):2061-2072. [5] Urquhart E A, Zaitchik B F, Hoffman M J, et al. Remotely Sensed Estimates of Surface Salinity in the Chesapeake Bay:A Statistical Approach[J]. Remote Sensing of Environment, 2012, 123:522-531. [6] Marghany M, Hashim M, Cracknell A P. Modelling Sea Surface Salinity from MODIS Satellite Data[C]//International Conference on Computational Science and Its Applications. Berlin:Springer, 2010:545-556. [7] Geiger E F, Grossi M D, Trembanis A C, et al. Satellite-Derived Coastal Ocean and Estuarine Salinity in the Mid-Atlantic[J]. Continental Shelf Research, 2013, 63:S235-S242. [8] Wang J, Deng Z. Development of a MODIS Data Based Algorithm for Retrieving Nearshore Sea Surface Salinity Along the Northern Gulf of Mexico Coast[J]. International Journal of Remote Sensing, 2018, 39(11):3497-3511. [9] Yu X, Xiao B, Liu X, et al. Retrieval of Remotely Sensed Sea Surface Salinity Using MODIS Data in the Chinese Bohai Sea[J]. International Journal of Remote Sensing, 2017, 38(23):7357-7373. [10] 丁晓英, 余顺超. 基于遥感的珠江口表层盐度监测研究[J]. 遥感信息, 2014, 29(5):96-100. Ding Xiaoying, Yu Shunchao. Water Salinity in Pearl River Estuary Based on Remote Sensing[J]. Remote Sensing Information, 2014, 29(5):96-100. [11] Johnson D R, Miller J, Schofield O. Dynamics and Optics of the Hudson River Outflow Plume[J]. Journal of Geophysical Research:Oceans, 2003, 108(C10):3323. [12] Stedmon C A, Osburn C L, Kragh T. Tracing Water Mass Mixing in the Baltic-North Sea Transition Zone Using the Optical Properties of Coloured Dissolved Organic Matter[J]. Estuarine, Coastal and Shelf Science, 2010, 87(1):156-162. [13] Bai Y, Pan D, Cai W J, et al. Remote Sensing of Salinity from Satellite-Derived CDOM in the Changjiang River Dominated East China Sea[J]. Journal of Geophysical Research:Oceans, 2013, 118(1):227-243. [14] 朱建荣, 丁平兴, 胡敦欣. 2000年8月长江口外海区冲淡水和羽状锋的观测[J]. 海洋与湖沼, 2003, 34(3):249-255. Zhu Jianrong, Ding Pingxing, Hu Dunxin. Observation of the Diluted Water and Plume Front off the Changjiang River Estuary During August 2000[J]. Oceanologia et Limnologia Sinica, 2003, 34(3):249-255. [15] 王永红, Heron M L, Ridd P. 航空微波遥感观测海水表层盐度的研究进展[J]. 海洋地质与第四纪地质, 2007, 27(1):139-145. Wang Yonghong, Heron M L, Ridd P. Progress in Measuring Sea Surface Salinity by Using Airborne Microwave Remote Sensing System[J]. Marine Geology & Quaternary Geology, 2007, 27(1):139-145. [16] 余小龙. 浑浊海岸水体色素成分的吸收特性测量及其浓度的遥感反演[D]. 上海:华东师范大学, 2013. Yu Xiaolong. Measurements of Pigment Absorption Coefficients and Retrieval Models of Pigment Concentration in Turbid Coastal Waters[D]. Shanghai:East China Normal University, 2013. [17] Ahmad Z, Franz B A, McClain C R, et al. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans[J]. Applied Optics, 2010, 49(29):5545-5560. [18] Bailey S W, Werdell P J. A Multi-Sensor Approach for the On-Orbit Validation of Ocean Color Satellite Data Products[J]. Remote Sensing of Environment, 2006, 102(1/2):12-23. [19] Gordon H R, Wang M. Influence of Oceanic Whitecaps on Atmospheric Correction of Ocean-Color Sensors[J]. Applied Optics, 1994(33):7754-7763. [20] Thuillier G, Hersé M, Foujols T, et al. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions[J]. Solar Physics, 2003, 214(1):1-22. [21] Naik P, D'Sa E J, Grippo M, et al. Absorption Properties of Shoal-Dominated Waters in the Atchafalaya Shelf, Louisiana, USA[J]. International Journal of Remote Sensing, 2011, 32(15):4383-4406. [22] Shanmugam P. New Models for Retrieving and Partitioning the Colored Dissolved Organic Matter in the Global Ocean:Implications for Remote Sensing[J]. Remote Sensing of Environment, 2011, 115(6):1501-1521. [23] 沈焕庭, 茅志昌, 朱建荣. 长江河口咸水入侵[M]. 北京:海洋出版社, 2003. Shen Huanting, Mao Zhichang, Zhu Jianrong. Saltwater Intrusion at the Mouth of the Yangtze River[M]. Beijing:Ocean Press, 2003. [24] 韩乃斌. 长江口南支河段氯度变化分析[J]. 水利水运工程学报, 1983(1):77-84. Han Naibin. Analysis of Chlorinity Variation in the Southern Branch of the Yangtze River Estuary[J]. Scientific Research on Water Conservancy and Water Transport, 1983(1):77-84. [25] 朱建荣, 吴辉, 李路,等. 极端干旱水文年(2006)中长江河口的盐水入侵[J]. 华东师范大学学报(自然科学版), 2010,4(1):1-6. Zhu Jianrong, Wu Hui, Li Lu, et al. Saltwater Intrusion in the Changjiang Estuary in the Extremely Drought Hydrological Year 2006[J]. Journal of East China Normal University (Natural Science), 2010, 4(1):1-6. [26] 刘兴泉, 尹宝树, 侯一筠. 长江口及其邻近海区环流和温, 盐结构动力学研究:Ⅱ:环流的基本特征[J]. 海洋与湖沼, 2008, 39(4):312-320. Liu Xingquan, Yin Baoshu, Hou Yijun. The Dynamic of Circulation and Temperature-Salinity Structure in the Changjiang Mouth and Its Adjacent Marine Area:Ⅱ:Major Characteristics of the Circulation[J]. Oceanologia et Limnologia Sinica, 2008, 39(4):312-320. [27] 赵军凯, 李九发, 戴志军, 等. 长江宜昌站径流变化过程分析[J]. 资源科学, 2012, 34(12):2306-2315. Zhao Junkai, Li Jiufa, Dai Zhijun, et al. Analysis the Runoff Variotion of Yangtze River in Yichang[J]. Resources Science, 2012, 34(12):2306-2315. [28] 王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1):226-233. Wang Lihua, Zhou Yunxuan. Driving Factors Analysis on Evolution of Water and Sediment at Datong Station[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):226-233. |
[1] | 张爽, 曾献奎, 吴吉春. 提孜那甫河流域融雪径流模拟及不确定性分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1415-1424. |
[2] | 魏伟, 周云轩, 田波, 钱伟伟, 湛玉剑, 黄盖先. 基于地面激光扫描的典型海岸带盐沼潮滩地形反演[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1889-1897. |
[3] | 牛军宜, 吴泽宁, 贾虎. 降水丰枯变化和产流条件改变对汾河径流影响的定量研究[J]. 吉林大学学报(地球科学版), 2016, 46(3): 814-823. |
[4] | 黄奇波, 覃小群, 刘朋雨, 康志强, 唐萍萍. 半干旱区岩溶碳汇原位监测方法适宜性研究[J]. 吉林大学学报(地球科学版), 2015, 45(1): 240-246. |
[5] | 李鸿雁,田琪,王小军,王红瑞,于文泉. 嫩江流域径流时空演化规律分析[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1282-1289. |
[6] | 刘奎, 庄振业, 刘东雁, 叶银灿. 舟山群岛和长江口邻近海域埋藏古河道水文环境特征[J]. J4, 2010, 40(1): 140-147. |
[7] | 鲁程鹏, 束龙仓, 苑利波, 张蓉蓉, 黄币娟, 王彬彬. 基于示踪试验求解岩溶含水层水文地质参数[J]. J4, 2009, 39(4): 717-721. |
[8] | 孙平安, 林年丰, 李昭阳, 汤洁, 汪雪格. 松嫩平原水土保持价值复合计算模型的建立及应用[J]. J4, 2006, 36(03): 433-442. |
[9] | 郑宗生,周云轩,沈 芳. GIS支持下长江口深水航道治理一、二期工程对北槽拦门沙的影响分析[J]. J4, 2006, 36(01): 85-0090. |
|