吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1768-1779.doi: 10.13278/j.cnki.jjuese.20180288
闫英伟1,2, 王者江1, 韩飞3, 刘聪1, 曾凡杰1
Yan Yingwei1,2, Wang Zhejiang1, Han Fei3, Liu Cong1, Zeng Fanjie1
摘要: 利用高频面波反演横波速度一直是浅地表地震工程研究的热点。为深入认识利用高频面波(瑞雷波和勒夫波)评价横波速度的能力,本文首先采取高阶交错网格有限差分法实现两层模型的瑞雷波和勒夫波数值模拟,并应用τ-p变换形成频散能量图。相比瑞雷波,不同模式的勒夫波频散能量很接近,这说明易于实现多模式勒夫波反演。然后利用线性映射实现广义模式识别这种非线性反演方法对含软弱夹层的四层模型的基模式、多模式瑞雷波和勒夫波的变厚度反演。若初始模型很拙劣,相比勒夫波,瑞雷波基模式反演不能重建地层中含有软弱夹层这一特征,瑞雷波多模式反演则可以重建这一特征;勒夫波基模式和多模式反演都可以重建这一特征。即使在地层的泊松比与估计值相差很大时,瑞雷波多模式反演仍能重建地层结构,但其频散曲线总是存在"模式接吻"现象,容易模式误判;而勒夫波反演则不用估计地层泊松比,也不存在"模式接吻"现象。一系列算例表明:高模式瑞雷波的加入会显著提高横波速度评价结果的精度;而高模式勒夫波的加入会令反演系统对半空间以上异常层的参数过于敏感,造成参数过度估计,但也会显著提升对半空间横波速度的评价能力。最后,应用本文方法实现了对实测勒夫波数据的分析。
中图分类号:
[1] Yilmaz Ö, Eser M, Berilgen M. A Case Study of Seismic Zonation in Municipal Areas[J]. The Leading Edge, 2006, 25(3):319-330. [2] 夏江海.高频面波方法[M].武汉:中国地质大学出版社,2015. Xia Jianghai. High-Frequency Surface Wave Method[M]. Wuhan:Press of China University of Geosciences, 2015. [3] Xia J, Miller R D, Park C B. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves[J]. Geophysics, 1999, 64(3):691-700. [4] Xia J, Xu Y, Luo Y, et al. Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity[J].Surveys in Geophysics, 2012, 33(5):841-860. [5] McMechan G A, Yedlin M J. Analysis of Dispersive Waves by Wave Field Transformation[J]. Geophysics, 1981, 46(6):869-874. [6] Park C B, Miller R D, Xia J. Multichannel Analysis of Surface Waves[J]. Geophysics, 1999, 64(3):800-808. [7] Steeples D W. Near-Surface Geophysics:75 Years of Progress[J]. The Leading Edge, 2005, 24(Sup. 1):S82-S85. [8] Safani J. Surface Wave Dispersion Modeling by Full-Wavefield Reflectivity and Inversion for Shallow Subsurface Imaging[D]. Kyoto:Kyoto University, 2007. [9] Zeng C, Xia J,Liang Q, et al. Comparative Analysis on Sensitivities of Love and Rayleigh Waves[C]//SEG Technical Program Expanded Abstracts. San Antonio:Society of Exploration Geophysicists, 2007:1138-1141. [10] Luo Y, Xia J, Xu Y, et al. Finite-Difference Modeling and Dispersion Analysis of High-Frequency Love Waves for Near-Surface Applications[J].Pure and Applied Geophysics, 2010, 167(12):1525-1536. [11] Song X H, Li D Y, Gu H M, et al. Insights into Performance of Pattern Search Algorithms for High-Frequency Surface Wave Analysis[J]. Computers & Geosciences, 2009, 35(8):1603-1619. [12] Hamimu L, Nawawi M, Safani J. Utilization of Multimode Love Wave Dispersion Curve Inversion for Geotechnical Site Investigation[J]. Journal of Geophysics and Engineering, 2011, 8(2):341-350. [13] Dal Moro G,Ferigo F. Joint Analysis of Rayleigh-and Love-Wave Dispersion:Issues, Criteria and Improvements[J]. Journal of Applied Geophysics, 2011, 75(3):573-589. [14] Socco L V, Boiero D, Maraschini M, et al. On the Use of the Norwegian Geotechnical Institute's Prototype Seabed-Coupled Shear Wave Vibrator for Shallow Soil Characterization:II:Joint Inversion of Multimodal Love and Scholte Surface Waves[J]. Geophysics Journal International, 2011, 185(1):237-252. [15] Xie H, Liu L. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas[J]. Journal of Earth Science, 2015, 26(6):807-812. [16] Fang H, Yao H, Zhang H, et al.Direct Inversion of Surface Wave Dispersion for Three-Dimensional Shallow Crustal Structure Based on Ray Tracing:Methodology and Application[J]. Geophysical Journal International, 2015, 201(3):1251-1263. [17] Wang N, Montagner J P, Burgos G, et al. Intrinsic, Versus, Extrinsic Seismic Anisotropy:Surface Wave Phase Velocity Inversion[J]. Comptes Rendus Geoscience, 2015, 347(2):66-76. [18] Dalton D R, Slawinski M A, Stachura P, et al. Sensitivity of Love and Quasi-Rayleigh Waves to Model Parameters[J]. Quarterly Journal of Mechanics & Applied Mathematics, 2017, 70(2):103-130. [19] Virieux J. P-SV Wave Propagation in Heterogenous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1986, 51(4):889-901. [20] Virieux J. SH-Wave Propagation in Heterogenous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1984, 49(11):1933-1942. [21] Mittet R. Free-Surface Boundary Conditions for Elastic Staggered-Grid Modeling Schemes[J]. Geophysics, 2002, 67(5):1616-1623. [22] Graves R W. Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4):1091-1106. [23] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2006, 66(1):294-307. [24] 刘四新,朱怡诺,王旭东,等.工程地震折射波解释方法研究进展[J].吉林大学学报(地球科学版),2018,48(2):350-363. Liu Sixin, Zhu Yinuo, Wang Xudong, et al. Progress of Engineering Seismic Refraction Interpretation[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):350-363. [25] 林松,李媛,程邈,等.嘉鱼断裂西向延伸与第四系活动特征[J].吉林大学学报(地球科学版),2018,48(5):1501-1511. Lin Song, Li Yuan, Cheng Miao, et al. Westward Extension and Quaternary Activity Charracteristics of Jiayu Fault[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5):1501-1511. [26] Levshin A L, Ritzwoller M H, Shapiro N M. The Use of Crustal Higher Modes to Constrain Crustal Structures Across Central Asia[J]. Geophysical Journal International, 2005, 160(3):961-972. [27] 凡友华.层状介质中瑞利面波频散曲线正反演研究[D].哈尔滨:哈尔滨工业大学,2001. Fan Youhua. Research of Forward and Inversion for Rayleigh Wave Dispersion Curve in Layered Medium[D]. Harbin:Harbin Institute of Technology, 2001. [28] Gao L, Xia J, Pan Y, et al. Reason and Condition for Mode Kissing in MASW Method[J]. Pure and Applied Geophysics, 2016, 173(5):1627-1638. [29] 韩飞,王者江,闫英伟. 基于广义模式识别面波基模式频散曲线反演研究[J].CT理论与应用研究,2017,26(3):309-320. Han Fei, Wang Zhejiang, Yan Yingwei. Research on Inversion of Surface Wave Base Mode Dispersion Curve Based on Generalized Pattern Search[J]. CT Theory and Applications, 2017, 26(3):309-320. [30] Dokter E, K hn D, Wilken D, et al.Full-Waveform Inversion of SH- and Love-Wave Data in Near-Surface Prospecting[J]. Geophysical Prospecting, 2017, 65(S1):216-236. [31] Luo Y, Xia J, Miller R D, et al. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform[J]. Pure and Applied Geophysics, 2008, 165(5):903-922. |
[1] | 逄硕, 刘财, 郭智奇, 刘喜武, 霍志周, 刘宇巍. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2): 606-615. |
[2] | 代荣获,张繁昌,刘汉卿,李灿灿. 基于贝叶斯理论的逐次迭代非线性AVA反演方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2026-2033. |
[3] | 沈金松,詹林森,马超. 裂缝等效介质模型对裂缝结构和充填介质参数的适应性[J]. 吉林大学学报(地球科学版), 2013, 43(3): 993-1003. |
[4] | 王洪德,高幼龙,薛星桥,金枭豪,王刚. 典型滑坡监测点优化布置[J]. 吉林大学学报(地球科学版), 2013, 43(3): 858-866. |
[5] | 余先川,周鑫,康增基,安卫杰,胡丹,王云涛,韦京莲,刘连刚. 一种基于多特征波段岩土层次分类方法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1825-1833. |
[6] | 姜秀娣,魏修成,王 健. 纵横波速度反演在气层识别中的应用[J]. J4, 2006, 36(01): 117-0122. |
|