吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1768-1779.doi: 10.13278/j.cnki.jjuese.20180288

• 地球探测与信息技术 • 上一篇    下一篇

多模式面波非线性反演

闫英伟1,2, 王者江1, 韩飞3, 刘聪1, 曾凡杰1   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 中国电子科技集团公司光电研究院, 天津 300308;
    3. 中水东北勘测设计研究有限责任公司, 长春 130061
  • 收稿日期:2018-11-12 发布日期:2019-11-30
  • 通讯作者: 王者江(1968-),男,教授,硕士生导师,主要从事工程与环境地球物理研究,E-mail:zhejiang@jlu.edu.cn E-mail:zhejiang@jlu.edu.cn
  • 作者简介:闫英伟(1994-),男,硕士研究生,主要从事浅地表高频面波成像研究,E-mail:wallace2012y@outlook.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0807902)

Nonlinear Inversion of Multi-Mode Surface Waves

Yan Yingwei1,2, Wang Zhejiang1, Han Fei3, Liu Cong1, Zeng Fanjie1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Academy of Opto-Electronics, China Electronic Technology Group Corporation, Tianjin 300308, China;
    3. China Water Northeastern Investigation, Design & Research Co., Ltd., Changchun 130061, China
  • Received:2018-11-12 Published:2019-11-30
  • Supported by:
    Supported by National Key R & D Program of China (2018YFC0807902)

摘要: 利用高频面波反演横波速度一直是浅地表地震工程研究的热点。为深入认识利用高频面波(瑞雷波和勒夫波)评价横波速度的能力,本文首先采取高阶交错网格有限差分法实现两层模型的瑞雷波和勒夫波数值模拟,并应用τ-p变换形成频散能量图。相比瑞雷波,不同模式的勒夫波频散能量很接近,这说明易于实现多模式勒夫波反演。然后利用线性映射实现广义模式识别这种非线性反演方法对含软弱夹层的四层模型的基模式、多模式瑞雷波和勒夫波的变厚度反演。若初始模型很拙劣,相比勒夫波,瑞雷波基模式反演不能重建地层中含有软弱夹层这一特征,瑞雷波多模式反演则可以重建这一特征;勒夫波基模式和多模式反演都可以重建这一特征。即使在地层的泊松比与估计值相差很大时,瑞雷波多模式反演仍能重建地层结构,但其频散曲线总是存在"模式接吻"现象,容易模式误判;而勒夫波反演则不用估计地层泊松比,也不存在"模式接吻"现象。一系列算例表明:高模式瑞雷波的加入会显著提高横波速度评价结果的精度;而高模式勒夫波的加入会令反演系统对半空间以上异常层的参数过于敏感,造成参数过度估计,但也会显著提升对半空间横波速度的评价能力。最后,应用本文方法实现了对实测勒夫波数据的分析。

关键词: 高频面波, 模式识别, 线性映射, 多模式反演, 横波速度

Abstract: Utilization of high frequency surface waves to invert S-wave velocity has been a hotspot in shallow seismic engineering research. To deeply understand the ability of high-frequency surface waves (Rayleigh waves and Love waves) to invert S-wave velocity, in this study, the high-order staggered-grid finite-difference method is used to simulate the Rayleigh and Love waves of a two-layer model. The t-p transformation is adopted to generate the dispersion energy image. Compared with Rayleigh waves, the Love waves dispersion energy of different modes is extremely consistent, which shows that multi-mode inversion is easier to achieve. The generalized pattern search is then realized by linear mapping to achieve the variable-thickness inversion of base mode and multi-mode Rayleigh waves and Love waves of a four-layer model with a weak interlayer. If the initial model is extremely poor, compared to Love waves,the base mode inversion of Rayleigh waves cannot reconstruct the feature of strata with a weak interlayer, which can be attained by multi-mode inversion of Rayleigh waves. Base mode and multi-mode inversion of Love waves can reconstruct this feature. Even when the Poisson's ratio of the stratum is much different from the estimated value, the multi-mode inversion of Rayleigh waves can still reconstruct the stratum structure. However, the multi-mode dispersion curve of Rayleigh waves always has the phenomenon of mode kissing, leading to misjudge. The Love-wave inversion does not require an estimated value of Poisson's ratio, and there is no mode kissing. A series of examples show that an addition of high-mode Rayleigh waves can significantly improve the accuracy of the shear wave velocity evaluation results;although an addition of high-mode Love waves would make the inversion system too sensitive to the parameters of anomalous strata above the half space, making the parameters excessive, it can improve the ability significantly to evaluate the shear wave velocity of the half space. Finally, the analysis of field Love-wave data is realized by using this method.

Key words: high frequency surface waves, pattern search, linear mapping, multi-mode inversion, S-wave velocity

中图分类号: 

  • P631.4
[1] Yilmaz Ö, Eser M, Berilgen M. A Case Study of Seismic Zonation in Municipal Areas[J]. The Leading Edge, 2006, 25(3):319-330.
[2] 夏江海.高频面波方法[M].武汉:中国地质大学出版社,2015. Xia Jianghai. High-Frequency Surface Wave Method[M]. Wuhan:Press of China University of Geosciences, 2015.
[3] Xia J, Miller R D, Park C B. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves[J]. Geophysics, 1999, 64(3):691-700.
[4] Xia J, Xu Y, Luo Y, et al. Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity[J].Surveys in Geophysics, 2012, 33(5):841-860.
[5] McMechan G A, Yedlin M J. Analysis of Dispersive Waves by Wave Field Transformation[J]. Geophysics, 1981, 46(6):869-874.
[6] Park C B, Miller R D, Xia J. Multichannel Analysis of Surface Waves[J]. Geophysics, 1999, 64(3):800-808.
[7] Steeples D W. Near-Surface Geophysics:75 Years of Progress[J]. The Leading Edge, 2005, 24(Sup. 1):S82-S85.
[8] Safani J. Surface Wave Dispersion Modeling by Full-Wavefield Reflectivity and Inversion for Shallow Subsurface Imaging[D]. Kyoto:Kyoto University, 2007.
[9] Zeng C, Xia J,Liang Q, et al. Comparative Analysis on Sensitivities of Love and Rayleigh Waves[C]//SEG Technical Program Expanded Abstracts. San Antonio:Society of Exploration Geophysicists, 2007:1138-1141.
[10] Luo Y, Xia J, Xu Y, et al. Finite-Difference Modeling and Dispersion Analysis of High-Frequency Love Waves for Near-Surface Applications[J].Pure and Applied Geophysics, 2010, 167(12):1525-1536.
[11] Song X H, Li D Y, Gu H M, et al. Insights into Performance of Pattern Search Algorithms for High-Frequency Surface Wave Analysis[J]. Computers & Geosciences, 2009, 35(8):1603-1619.
[12] Hamimu L, Nawawi M, Safani J. Utilization of Multimode Love Wave Dispersion Curve Inversion for Geotechnical Site Investigation[J]. Journal of Geophysics and Engineering, 2011, 8(2):341-350.
[13] Dal Moro G,Ferigo F. Joint Analysis of Rayleigh-and Love-Wave Dispersion:Issues, Criteria and Improvements[J]. Journal of Applied Geophysics, 2011, 75(3):573-589.
[14] Socco L V, Boiero D, Maraschini M, et al. On the Use of the Norwegian Geotechnical Institute's Prototype Seabed-Coupled Shear Wave Vibrator for Shallow Soil Characterization:II:Joint Inversion of Multimodal Love and Scholte Surface Waves[J]. Geophysics Journal International, 2011, 185(1):237-252.
[15] Xie H, Liu L. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas[J]. Journal of Earth Science, 2015, 26(6):807-812.
[16] Fang H, Yao H, Zhang H, et al.Direct Inversion of Surface Wave Dispersion for Three-Dimensional Shallow Crustal Structure Based on Ray Tracing:Methodology and Application[J]. Geophysical Journal International, 2015, 201(3):1251-1263.
[17] Wang N, Montagner J P, Burgos G, et al. Intrinsic, Versus, Extrinsic Seismic Anisotropy:Surface Wave Phase Velocity Inversion[J]. Comptes Rendus Geoscience, 2015, 347(2):66-76.
[18] Dalton D R, Slawinski M A, Stachura P, et al. Sensitivity of Love and Quasi-Rayleigh Waves to Model Parameters[J]. Quarterly Journal of Mechanics & Applied Mathematics, 2017, 70(2):103-130.
[19] Virieux J. P-SV Wave Propagation in Heterogenous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1986, 51(4):889-901.
[20] Virieux J. SH-Wave Propagation in Heterogenous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1984, 49(11):1933-1942.
[21] Mittet R. Free-Surface Boundary Conditions for Elastic Staggered-Grid Modeling Schemes[J]. Geophysics, 2002, 67(5):1616-1623.
[22] Graves R W. Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4):1091-1106.
[23] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2006, 66(1):294-307.
[24] 刘四新,朱怡诺,王旭东,等.工程地震折射波解释方法研究进展[J].吉林大学学报(地球科学版),2018,48(2):350-363. Liu Sixin, Zhu Yinuo, Wang Xudong, et al. Progress of Engineering Seismic Refraction Interpretation[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):350-363.
[25] 林松,李媛,程邈,等.嘉鱼断裂西向延伸与第四系活动特征[J].吉林大学学报(地球科学版),2018,48(5):1501-1511. Lin Song, Li Yuan, Cheng Miao, et al. Westward Extension and Quaternary Activity Charracteristics of Jiayu Fault[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5):1501-1511.
[26] Levshin A L, Ritzwoller M H, Shapiro N M. The Use of Crustal Higher Modes to Constrain Crustal Structures Across Central Asia[J]. Geophysical Journal International, 2005, 160(3):961-972.
[27] 凡友华.层状介质中瑞利面波频散曲线正反演研究[D].哈尔滨:哈尔滨工业大学,2001. Fan Youhua. Research of Forward and Inversion for Rayleigh Wave Dispersion Curve in Layered Medium[D]. Harbin:Harbin Institute of Technology, 2001.
[28] Gao L, Xia J, Pan Y, et al. Reason and Condition for Mode Kissing in MASW Method[J]. Pure and Applied Geophysics, 2016, 173(5):1627-1638.
[29] 韩飞,王者江,闫英伟. 基于广义模式识别面波基模式频散曲线反演研究[J].CT理论与应用研究,2017,26(3):309-320. Han Fei, Wang Zhejiang, Yan Yingwei. Research on Inversion of Surface Wave Base Mode Dispersion Curve Based on Generalized Pattern Search[J]. CT Theory and Applications, 2017, 26(3):309-320.
[30] Dokter E, K hn D, Wilken D, et al.Full-Waveform Inversion of SH- and Love-Wave Data in Near-Surface Prospecting[J]. Geophysical Prospecting, 2017, 65(S1):216-236.
[31] Luo Y, Xia J, Miller R D, et al. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform[J]. Pure and Applied Geophysics, 2008, 165(5):903-922.
[1] 逄硕, 刘财, 郭智奇, 刘喜武, 霍志周, 刘宇巍. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2): 606-615.
[2] 代荣获,张繁昌,刘汉卿,李灿灿. 基于贝叶斯理论的逐次迭代非线性AVA反演方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2026-2033.
[3] 沈金松,詹林森,马超. 裂缝等效介质模型对裂缝结构和充填介质参数的适应性[J]. 吉林大学学报(地球科学版), 2013, 43(3): 993-1003.
[4] 王洪德,高幼龙,薛星桥,金枭豪,王刚. 典型滑坡监测点优化布置[J]. 吉林大学学报(地球科学版), 2013, 43(3): 858-866.
[5] 余先川,周鑫,康增基,安卫杰,胡丹,王云涛,韦京莲,刘连刚. 一种基于多特征波段岩土层次分类方法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1825-1833.
[6] 姜秀娣,魏修成,王 健. 纵横波速度反演在气层识别中的应用[J]. J4, 2006, 36(01): 117-0122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[2] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[3] 庄文明,陈国能,林小明,彭卓伦,马浩明. 广东长坑金银矿床氧同位素组成特征及矿床成因讨论[J]. J4, 2006, 36(04): 521 -526 .
[4] 付广,王有功,苏玉平. 古龙凹陷青山口组超压源岩天然气扩散速度演化史[J]. J4, 2007, 37(1): 91 -0097 .
[5] 王文颖,苏 克,高桂梅,甘树才,刘招君. 吉林省油页岩中铂族元素的化学特征及分配规律研究[J]. J4, 2006, 36(6): 969 -0973 .
[6] 杨 昊,孙建国,韩复兴. 波前扩展有限差分地震波走时算法的C++语言描述[J]. J4, 2007, 37(3): 615 -0619 .
[7] 揣媛媛,肖克炎,湛邵斌,刘亚剑. 基于SIG的证据权法矿产资源评价及应用[J]. J4, 2007, 37(1): 54 -0058 .
[8] 胡建武,陈建平,朱鹏飞. 基于证据权重法的中下扬子北缘下古生界油气地质异常[J]. J4, 2007, 37(3): 458 -0462 .
[9] 董 军,张 晶,赵勇胜,张伟红,吕爱民,韩 融,刘莹莹,李志斌. 渗滤液污染物在地下环境中的生物地球化学作用[J]. J4, 2007, 37(3): 587 -0591 .
[10] 张文权,翁爱华. 地面核磁共振正则化反演方法研究[J]. J4, 2007, 37(4): 809 -0813 .