吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 294-303.doi: 10.13278/j.cnki.jjuese.20190021
• 地球探测与信息技术 • 上一篇
邵广周1, 赵凯鹏1, 吴华2
Shao Guangzhou1, Zhao Kaipeng1, Wu Hua2
摘要: 近年来,瑞利波波形反演技术因其避开了常规频散曲线计算,直接进行波场计算和反演不再受水平层状介质理论假设的限制,得到广大学者的高度重视。但瑞利波波形反演过程中需要不断进行波场正演和逆推计算。另外,由于浅地表速度较小,模拟计算时需要较小的网格间距才能避免数值频散,这无疑大大增加了正演模拟的计算量。对于这一问题,通常采用并行化设计来提高正演模拟的计算效率。本文基于消息传递接口(MPI)并行有限差分算法,以区域分解思路将模型区间分解成若干子区域,各区域互相通信,共同完成对模型的正演计算。并详细给出了区域分解、坐标转换、区域通信、波场合并等并行方案中的具体实现方法和实现步骤。通过对弹性模型、Kelvin黏弹性模型和标准线弹性固体(SLS)黏弹性模型不同并行方案的计算结果进行分析,验证了本文并行方案的可行性和有效性。并行计算结果表明,与单处理器计算时间相比,增加处理器数目可以明显减少计算时间,但随着处理器数目的增加,不同处理器之间的通信时间也增大;因此,并行时需要选择合适的处理器数目。对于黏弹性介质模型,SLS黏弹性模型的并行计算效率优于Kelvin黏弹性模型。
中图分类号:
[1] 吴华,李庆春,邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111. Wu Hua, Li Qingchun, Shao Guangzhou. Development Status and Prospect of Rayleigh Waveform Inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111. [2] Tarantola A. Inversion of Seismic Reflection Data in the Acoustic Approximation[J]. Geophysics, 1984(49):1259-1266. [3] Haskell N A. The Dispersion of Surface Waves on Multilayered Media[J]. Bulletin of the Seismological Society of America, 1953, 43(1):17-34. [4] Schwab F. Surface Wave Dispersion Computation:Knopoff's Method[J]. Bulletin of the Seismological Society of America, 1970, 60(5):1491-1520. [5] Carcione J M, Herman J C, Kroode A P E. Seismic Modeling[J]. Geophysics, 2002, 67(4):1304-1325. [6] 裴正林,牟永光. 地震波传播数值模拟[J]. 地球物理学进展, 2004, 19(4):933-941. Pei Zhenglin, Mou Yongguang. Numerical Simulation of Seismic Wave Propagation[J]. Progress in Geophysics, 2004, 19(4):933-941. [7] Virieux J. P-SV Wave Propagation in Heterogeneous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1986, 51(4):889-901. [8] Levander A R. Fourth-Order Finite-Difference P-SV Seismograms[J]. Geophysics, 1988, 53(11):1425-1436. [9] Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2):185-200. [10] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307. [11] Johan O A R, Joakim O B, William W S. Viscoelastic Finite-Difference Modeling[J]. Geophysics, 1994, 59(9):1444-1456. [12] Zahradnık J, Priolo E. Heterogeneous Formulations of Elastodynamic Equations and Finite Difference Schemes[J]. Geophys J Int, 1995, 120(3):663-676. [13] Bohlen T, Saenger E H. Accuracy of Heterogeneous Staggered-Grid Finite-Difference Modeling of Rayleigh Waves[J]. Geophysics, 2006, 71(4):T109-T115. [14] Robertsson O A J. A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography[J]. Geophysics, 1996, 61(6):1921-1934. [15] Rune M. Free-Surface Boundary Conditions for Elastic Staggered-Grid Modeling Schemes[J]. Geophysics, 2002, 67(5):1616-1623. [16] 周竹生,刘喜亮,熊孝雨. 弹性介质中瑞雷面波有限差分法正演模拟[J]. 地球物理学报, 2007, 50(2):567-573. Zhou Zhusheng, Liu Xiliang, Xiong Xiaoyu. Finite Difference Modeling of Rayleigh Surface Wave in Elastic Media[J]. Chinese Journal of Geophysics, 2007, 50(2):567-573. [17] Thomas B, Tobias M M, Bernd M. Parallel Finite-Difference Modeling of Seismic Wave Scattering in 3-D Elastic Random Media[C]//SEG Technical Program Expanded Abstracts 2001. Tulsa:SEG, 2001:1147-1150. [18] Felix R, Mauricio H, Albert F, et al. Generalized Elastic Staggered Grids on Multi-GPU Platforms[C]//SEG Technical Program Expanded Abstracts 2012. Tulsa:SEG, 2012:1-5. [19] Liu Xiaobo, Chen Jingyi, Lan Haiqiang, et al. Numerical Modeling of Wave Propagation with an Irregular Free Surface and Graphic Processing Unit (GPU) Implementation[C]//SEG Technical Program Expanded Abstracts 2015. Tulsa:SEG, 2015:3704-3709. [20] 周洲. 基于多线程并行计算的有限差分法弹性波数值模拟[J]. 硅谷, 2015, 4:76. Zhou Zhou. Numerical Simulation of Elastic Waves Using Finite Difference Method Based on Multithread Parallel Computation[J]. Silicon Valley, 2015, 4:76. [21] 张明财,熊章强,张大洲. 基于MPI的三维瑞雷面波有限差分并行模拟[J]. 石油物探, 2013, 52(4):354-362. Zhang Mingcai, Xiong Zhangqiang, Zhang Dazhou. Finite Difference Parallel Simulation of 3D Rayleigh Surface Wave Based on MPI[J]. Geophysical Prospecting for Petroleum, 2013, 52(4):354-362. [22] 钟飞, 张伟, 焦标强,等. 可控震源粘弹性波动方程有限差分模拟[J]. 煤田地质与勘探, 2011, 39(2):57-65. Zhong Fei, Zhang Wei, Jiao Biaoqiang, et al. Finite Difference Simulation of Viscoelastic Wave Equation in Vibroseis[J]. Coal Geology & Exploration, 2011, 39(2):57-65. [23] Foster I. Designing and Building Parallel Programs:Concepts and Tools for Parallel Software Engineering[M]. New Jersey:Addison-Wesley, 1995. [24] 杨庆节,刘财,耿美霞,等.交错网格任意阶导数有限差分格式及差分系数推导[J]. 吉林大学学报(地球科学版), 2014, 44(1):375-385. Yang Qingjie, Liu Cai, Geng Meixia, et al. Staggered Grid Finite Difference Scheme and Coefficients Deduction of Any Number of Derivatives[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1):375-385. [25] 崔永福, 李国发, 吴国忱, 等. 基于面波模拟和曲波变换的去噪技术[J]. 吉林大学学报(地球科学版), 2016, 46(3):911-919. Cui Yongfu, Li Guofa, Wu Guochen, et al. Seismic Denoising Technique Based on Surface Wave Modeling and Curvelet Transform[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):911-919. [26] Roden J A, Gedney S D. Convolutional PML(CPML):An Efficient FDTD Implementation of the CFS_PML for Arbitrary Media[J]. Microwave and Optical Technology Letters, 2000, 27(5):334-339. [27] Damir P, Ray M. Convolutional Perfectly Matched Layer for Isotropic and Anisotropic Acoustic Wave Equations[C]//SEG Technical Program Expanded Abstracts 2010. Tulsa:SEG, 2010:2925-2929. |
[1] | 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889. |
[2] | 李建平, 翁爱华, 李世文, 李大俊, 李斯睿, 杨悦, 唐裕, 张艳辉. 基于球坐标系下有限差分的地磁测深三维正演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 411-419. |
[3] | 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561. |
[4] | 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537. |
[5] | 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593. |
[6] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[7] | 周晓华, 陈祖斌, 曾晓献, 焦健. 交错网格有限差分法模拟微动信号[J]. J4, 2012, 42(3): 852-857. |
[8] | 孟庆生, 樊玉清, 张珂, 张盟. 高阶有限差分法管波传播数值模拟[J]. J4, 2011, 41(1): 292-298. |
[9] | 刘四新, 周俊峰, 吴俊军, 曾昭发, 万洪祥. 金属矿钻孔雷达探测的数值模拟[J]. J4, 2010, 40(6): 1479-1484. |
[10] | 孙章庆, 孙建国, 张东良. 2.5维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2010, 40(2): 425-431. |
[11] | 杨昊, 孙建国, 韩复兴, 马淑芳. 基于完全三叉树堆排序的波前扩展有限差分地震波走时快速算法[J]. J4, 2010, 40(1): 188-194. |
[12] | 孙章庆, 孙建国, 张东良. 二维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2009, 39(3): 528-534. |
[13] | 殷文. 基于频率域高阶有限差分法的正演模拟及并行算法[J]. J4, 2008, 38(1): 144-0151. |
[14] | 杨海燕,岳建华. 巷道影响下三维全空间瞬变电磁法响应特征[J]. J4, 2008, 38(1): 129-0134. |
[15] | 吴国忱,罗彩明,梁 楷. TTI介质弹性波频率-空间域有限差分数值模拟[J]. J4, 2007, 37(5): 1023-1033. |
|