吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1169-1181.doi: 10.13278/j.cnki.jjuese.20190076

• 地球探测与信息技术 • 上一篇    下一篇

复杂海底各种地震波的射线追踪与运动学特征

孙章庆, 汪登科, 韩复兴   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2019-04-08 出版日期:2019-07-26 发布日期:2019-07-26
  • 通讯作者: 韩复兴(1981-),男,副教授,博士,主要从事地震波传播与成像、地球物理计算等方面的学习与研究,E-mail:hanfx@jlu.edu.cn E-mail:hanfx@jlu.edu.cn
  • 作者简介:孙章庆(1982-),男,土家族,副教授,博士,主要从事地震资料处理与解释、地震波传播理论与成像、储层地球物理、计算地球物理、工程与灾害地球物理、岩石物理等方面的教学与研究,E-mail:sun_zhangq@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41404085);吉林大学优秀青年教师培养计划项目(419080500337);吉林油田集团公司项目(JS2018-W-32-JZ-10-20)

Ray Tracing and Kinematic Characteristics of Different Types of Seismic Waves in Complex Seabed

Sun Zhangqing, Wang Dengke, Han Fuxing   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2019-04-08 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Science Foundation of China (41404085), Training Program for Excellent Young Teachers in Jilin University (419080500337) and Project of Jilin Oilfield Group Company (JS2018-W-32-JZ-10-20)

摘要: 为了实现适应崎岖海底、大陡坡、海底火山等复杂海底地质条件且灵活、稳定、精度高的射线追踪方法,并基于该方法详细分析复杂海底条件下各种地震波型的运动学特征,综合多种算法的优势,实现了一种快速推进迎风插值射线追踪方法。首先,采用混合网格法剖分复杂海底地质模型;其次,通过融入迎风差分思想的线性插值策略来构建精度高、无条件稳定且灵活的局部走时和射线路径计算公式;然后,综合应用这些公式和多级次快速推进法,灵活计算整个模型各种类型地震波的走时,并基于逆向追踪方法计算射线路径;最后,对该方法进行了精度分析,发现其能够获得相对高的走时和射线路径计算精度,且反射波的计算精度远高于入射波。此外,计算实例分析显示,初至波中富含折射波和陡倾构造的反射波在很大偏移距还能被接收,崎岖海底各种波型传播路径复杂;基于此提出加大采集排列长度和采用直达波走时可提高复杂构造成像质量等复杂海底地震数据采集与处理方面的思考与建议。

关键词: 复杂海底条件, 多类型地震波, 走时计算, 射线追踪, 运动学特征分析

Abstract: In order to establish a flexible, stable and accurate ray tracing method for complex seabed geological conditions such as rugged seabed, steep slope seabed, submarine volcano, and to analyze the kinematic characteristics of different types of seismic waves, we put forward a fast marching upwind interpolation method through taking the advantages of many kinds of algorithms together. Firstly, a complex seabed model is built by using hybrid grids. Secondly, through incorporating the idea of upwind differences, the linear interpolation scheme is adapted to construct high precision,unconditionally stable, and flexible local computational formulas for travel-time and ray-path. Then, by using these formulas and the flexibility of the fast marching method, the travel-time information of various types of seismic waves in the whole model are calculated, and by using reverse tracing, the ray-path is calculated. Finally, the accuracy of this method is analyzed. It is found that the computational accuracy is relatively high by using this method for travel-time and ray-path, and the computational accuracy of reflected waves is much higher than that of incident waves. Furthermore, based on some computational examples, the kinematic characteristics of seismic waves can be obtained, for example, refracted waves are abundant in the first-arrival wave, reflected wave caused by steep structures can be received at large offsets, and the ray paths of various waves are complicated in rugged seabed, etc. Finally, based on the above kinematic characteristics, we suggest to use the travel-time of direct wave for replacing the one of first-arrival wave and increase the length of acquisition array to improve imaging quality of steep dip structures.

Key words: complex seabed conditions, different types of seismic waves, travel-time computation, ray tracing, kinematics characteristic analysis

中图分类号: 

  • P631.4
[1] Valente L S S, Santos H B, Costa J C, et al. Time-to-Depth Conversion and Velocity Estimation by Image-Wavefront Propagation[J]. Geophysics, 2017, 82(6):U75-U85.
[2] Huang Xingguo, Sun Hui, Sun Jianguo. Born Modeling for Heterogeneous Media Using the Gaussian Beam Summation Based Green's Function[J]. Journal of Applied Geophysics, 2016, 131:191-201.
[3] Julian B R, Gubbins D. Three-Dimensional Seismic Ray Tracing[J]. Geophysics, 1977, 43:95-113.
[4] Moser T J. Shortest Path Calculation of Seismic Rays[J]. Geophysics, 1991, 56(1):59-67.
[5] Vidale J. Finite-Difference Calculation of Travel Times[J]. Bull Seism Soc Am, 1988, 78(6):2062-2076.
[6] Hao Q, Alkhalifah T. An Acoustic Eikonal Equation for Attenuating Transversely Isotropic Media with a Vertical Symmetry Axis Acoustic Attenuating VTI Media[J].Geophysics, 2017, 82(1):C9-C20.
[7] Waheed U B, Alkhalifah T. A Fast Sweeping Algorithm for Accurate Solution of the Tilted Transversely Isotropic Eikonal Equation Using Factorization[J]. Geophysics, 2017, 82(6):WB1-WB8.
[8] Hu J, Cao J, Wang H, et al. 3D Travel-Time Computation for Quasi-P-Wave in Orthorhombic Media Using Dynamic Programming[J]. Geophysics, 2017, 83(1):C27-C35.
[9] Asakawa E, Kawanaka T. Seismic Ray Tracing Using Linear Traveltime Interpolation[J]. Geophysical Prospecting, 1993, 41(1):99-111.
[10] Schneider W A J, Ranzinger K A, Balch A H, et al. A Dynamic Programming Approach to First Arrival Traveltime Computation in Media with Arbitrarily Distributed Velocities[J]. Geophysics, 1992, 57(1):39-50.
[11] Han S, Zhang W, Zhang J. Calculating QP-Wave Traveltimes in 2-D TTI Media by High-Order Fast Sweeping Methods with a Numerical Quartic Equation Solver[J]. Geophysical Journal International, 2017, 210(3):1560-1569.
[12] Vinje V, Iversen E, Gjoystdal H. Traveltime and Amplitude Estimation Using Wavefront Construction[J]. Geophysics, 1993, 58(8):1157-1166.
[13] Leidenfrost A, Ettrich N, Gajewski D, et al. Comparison of Six Different Methods for Calculating Traveltimes[J]. Geophysical Prospecting, 1999, 47:269-297.
[14] 徐涛,徐果明,高尔根,等.三维复杂介质的块状建模和试射射线追踪[J].地球物理学报,2004,47(6):1118-1126. Xu Tao, Xu Guoming, Gao Ergen, et al. Block Modeling and Shooting Ray Tracing in Complex 3-D Media[J]. Chinese Journal of Geophysics,2004, 47(6):1118-1126.
[15] Sun Jianguo, Sun Zhangqing, Han Fuxing. A Finite Difference Scheme for Solving the Eikonal Equation Including Surface Topography[J]. Geophysics, 2011, 76(4):T53-T63.
[16] Zhou B, Greenhalgh S. Shortest Path' Ray Tracing for Most General 2D/3D Anisotropic Media[J]. Geophysics, 2005, 2:54-63.
[17] Sethian J A, Popovici A M. 3-D Traveltime Computation Using the Fast Marching Method[J]. Geophysics, 1999, 64:516-523.
[18] 熊金良,李国发,王濮,等.地震波走时计算的逆风差分算法[J].物探化探计算技术,2004, 26(4):295-298. Xiong Jinliang, Li Guofa, Wang Pu, et al. Upwind Finite-Difference Solution of Eikonal Equation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(4):295-298.
[19] Rawlinson N, Sambridge M. Multiple Reflection and Transmission Phases in Complex Layered Media Using a Multistage Fast Marching Method[J]. Geophysics, 2004, 69(5):1338-1350.
[20] Li Zhenchun, Liu Yulian, Zhang Jianlei, et al. Finite-Difference Calculation of Traveltimes Based on Rectangular Grid[J]. Acta Seismologica Sinica, 2004, 26(6):644-650.
[21] Liu Zhenwu, Sun Yonghe, Sun Jianguo, et al. A Method for Computing the 2D Seismic Traveltime Including the Surface Topography by Combining the Linear Interpolation and the Narrow Band Technique[C]//International Geophysical Conference & Exposition. Beijing:CPS/SEG, 2009:130.
[22] Wang Huazhong, Kuang Bin, Ma Zaitian, et al. 3-D Traveltime Calculation in Arbitrary Velocity Distribution with Dynamic Programming Approach[J]. Chinese Journal of Geophysics, 2001, 44(Sup. 1):179-189.
[23] 孙章庆,孙建国,韩复兴.复杂地表条件下基于线性插值和窄带技术的地震波走时计算[J].地球物理学报,2009,52(11):2846-2853. Sun Zhangqing, Sun Jianguo, Han Fuxing. Traveltimes Computation Using Linear Interpolation and Narrow Band Technique Under Complex Topographical Conditions[J]. Chinese Journal of Geophysics, 2009, 52(11):2846-2853.
[24] 孙章庆.起伏地表条件下的地震波走时与射线路径计算[D].长春:吉林大学, 2011. Sun Zhangqing. The Seismic Traveltimes and Raypath Computation Under Undulating Earth's Surface Condition[D]. Changchun:Jilin University, 2011.
[25] 高亮,李幼铭,陈旭荣,等.地震射线辛几何算法初探[J]. 地球物理学报, 2000, 43(3):402-410. Gao Liang, Li Youming, Chen Xurong, et al. An Attempt to Seismic Ray Tracing with Symplectic Algorithm[J]. Chinese Journal of Geophysics, 2000, 43(3):402-410.
[26] Bancroft J C, Du Xiang. The Computation of Traveltimes When Assuming Locally Circular or Spherica Wavefronts[C]//76th Annual International Meeting. New Orleans:SEG, 2006:2231-2235.
[27] Kononov A, Gisolf D, Verschuur E. Application of Neural Networks to Travel-Times Computation[C]//77th Annual International Meeting. San Antonio:SEG, 2007:1785-1789.
[28] Bóna A, Slawinski M A, Smith P. Ray Tracing by Simulated Annealing:Bending Method[J]. Geophysics, 2009, 74(2):T25-T32.
[29] Huang X, Greenhalgh S. Linearized Formulations and Approximate Solutions for the Complex Eikonal Equation in Orthorhombic Media and Applications of Complex Seismic Traveltime[J]. Geophysics, 2018, 83(3):C115-C136.
[1] 肖汉, 王德利. 基于快速匹配法的VTI介质走时计算[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1160-1168.
[2] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[3] 叶佩,李庆春. 旅行时线性插值射线追踪提高计算精度和效率的改进方法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 291-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[2] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .
[3] 王明常,应 申,李 霖. 基于Voronoi图的空间信息多尺度表达[J]. J4, 2005, 35(04): 539 -0542 .
[4] 来雅文,王林根,肖国拾,甘树才,段国正. 黔西玄武岩铂族元素赋存状态及地质意义[J]. J4, 2005, 35(05): 607 -610 .
[5] 杜 崇,林年丰,汤 洁,李昭阳. 吉林西部平原土地利用动态变化的RS-GIS集成研究[J]. J4, 2005, 35(03): 366 -0372 .
[6] 王羽生,马小凡,王雨亮,程海军,吕志勇. 复合生物反应器处理城市污水的试验研究[J]. J4, 2005, 35(03): 373 -0377 .
[7] 杨德明,和钟铧,黄映聪,赵 亮,戴琳娜. 西藏墨竹工卡县门巴地区松多岩群变质作用特征及时代讨论[J]. J4, 2005, 35(04): 430 -0435 .
[8] 张俊,庞雄奇,姜振学,邵振军,陈冬霞,王亮. 东营凹陷岩性油藏含油性定量预测[J]. J4, 2005, 35(06): 732 -0737 .
[9] 肖长来,梁秀娟,崔建铭,兰盈盈,张君,李书兰,梁瑞奇,郑策. 确定含水层参数的全程曲线拟合法[J]. J4, 2005, 35(06): 751 -0755 .
[10] 王 强,昝淑芹,金利勇,陈 军. 吉林省公主岭早白垩世泉头组网形蛋(Dictyoolithus)一新种[J]. J4, 2006, 36(02): 153 -0157 .