吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1160-1168.doi: 10.13278/j.cnki.jjuese.20180198

• 地球探测与信息技术 • 上一篇    下一篇

基于快速匹配法的VTI介质走时计算

肖汉, 王德利   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2018-07-23 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:肖汉(1993-),男,博士研究生,主要从事地震速度建模研究,E-mail:1184918974@qq.com
  • 基金资助:
    国家科技重大专项(2016ZX05026-002-003);国家自然科学基金项目(41374108)

Travel-Time Computation in VTI Media Based on Fast Marching Method

Xiao Han, Wang Deli   

  1. College of GeoExploration Sicence and Technology, Jilin University, Changchun 130026, China
  • Received:2018-07-23 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Nature Science Foundation of China (2016ZX05026-002-003) and National Natural Science Foundation of China (41374108)

摘要: 地震波全波形反演是当今地质构造反演的潮流。在层析成像等为其提供初始模型的预处理中,地震波初至走时是一个非常重要的物理量。因而,高效高精度且稳定的走时计算方法对于各向异性建模具有重要的研究意义。为实现高效高精度且稳定的走时计算,首先利用扰动理论及泰勒公式将具有垂直对称轴的横向各向同性(VTI)介质程函方程展开,得到走时解;然后引入各向同性快速推进法(fast marching method,FMM),运用改进后的迎风差分格式求取差分格式黏滞解获取单点走时。结合窄带推进技术,得到了一种新的基于快速匹配法的VTI介质走时计算方法。通过对均匀弱各向异性模型计算结果和解析值的对比,评估了其误差,相对误差稳定于0.5%以下。针对该方法的有效性和稳定性,对层状介质模型和盐丘模型反射波走时进行了试算,取得了较好的效果。理论分析和模型试算表明,该方法对VTI介质走时计算具有较高的精度,能够应用于各向异性层析成像和全波场偏移等研究中。

关键词: 各向异性, 快速匹配法, 窄带技术, 走时计算

Abstract: Full-wave seismic inversion is a trend of geological structure interpretation. Seismic first-arrival travel time is an important parameter in processes of providing initial models like tomography. An efficient, accurate and stable method for travel time computation is very important for anisotropic modeling. Firstly, we use the perturbation theory and Taylor's theorem to expand the eikonal equation of the VTI media, by which we achieve the analytical solution of the homogeneous media (Alkhalifa2012); next, we introduce a fast marching method of isotropic media, and use the upwind difference to obtain the single point travel time. Combining with narrowband propulsion technique, we set a new travel-time computation method in VTI media based on the fast matching method. The calculated result is evaluated by comparing with the analytical values of the weak anisotropic homogenous model. The effectiveness and stability of the method is verified through calculating the travel time of the reflected waves in the layered medium model. The theoretical analysis and model trial show that this method is efficient and precise, and can be applied to anisotropic tomography and full wave field migration.

Key words: anisotropy, fast marching method, narrow band technique, travel time calculation

中图分类号: 

  • P631.4
[1] Um J, Thurber C. A Fast Algorithm for Two-Point Seismic Ray Tracing[J]. Bulletin of the Seismological Society of America, 1987, 77(3):972-986.
[2] Moser T J, Nolet G, Snieder A R. Ray Bending Revisited[J]. Bulletin of the Seismological Society of America, 1992, 82(1):259-288.
[3] Langan R T. Tracing of Rays Through Heterogeneous Media:An Accurate and Efficient Procedure[J]. Geophysics, 1985, 50(9):1456-1465.
[4] Dijkstra E W. A Note on Two Problems in Connection with Graphs[J]. Numerische Mathematics, 1959, 1(1):269-271.
[5] 孙章庆,孙建国,韩复兴.复杂地表条件下基于线性插值和窄带技术的地震波走时计算[J]. 地球物理学报, 2009, 52(11):2846-2853. Sun Zhangqing, Sun Jianguo, Han Fuxing. Traveltimes Computation Using Linear Interpolation and Narrow Band Technique Under Complex Topographical Conditions[J]. Chinese Journal of Geophysics, 2009, 52(11):2846-2853.
[6] 孙章庆, 孙建国, 岳玉波,等. 基于快速推进迎风双线性插值法的三维地震波走时计算[J]. 地球物理学报, 2015,58(6):2011-2023. Sun Zhangqing, Sun Jianguo, Yue Yubo, et al. 3D Traveltime Computation Using Fast Marching Upwind Bilinear Interpolation Method[J]. Chinese Journal of Geophysics, 2015, 58(6):2011-2023.
[7] 李培明, 梅胜全, 马青坡. 一种改进的双线性插值射线追踪方法[J]. 石油地球物理勘探, 2013, 48(4):553-558. Li Peiming, Mei Shengquan, Ma Qingpo. An Improved Bilinear Interpolation Traveltime Ray Tracing Method[J]. Oil Geophysical Prospecting, 2013, 48(4):553-558.
[8] 梅胜全,邓飞,钟本善,等.基于改进的双线性走时插值的三维射线追踪[J]. 物探化探计算技术,2010,32(2);152-157. Mei Shengquan, Deng Fei, Zhong Benshan, et al.The 3D Ray Tracing Method Base on the Improved Bilinear Traveltime Interpolation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2010, 32(2):152-157.
[9] Alkhalifah T. Traveltime Computation with the Linearized Eikonal Equation for Anisotropic Media[J]. Geophysical Prospecting, 2000, 50(4):373-382.
[10] Vidale J. Finite-Difference Calculation of Travel Times[J]. Bulletin of the Seismological Society of America, 1988, 78(6):2062-2076.
[11] 孙章庆, 孙建国, 韩复兴. 三维起伏地表条件下地震波走时计算的不等距迎风差分法[J]. 地球物理学报, 2012, 55(7):2441-2449. Sun Zhangqing, Sun Jianguo, Han Fuxing. Traveltime Computation Using the Upwind Finite Difference Method with Nonuniform Grid Spacing in a 3D Undulating Surface Condition[J]. Chinese Journal of Geophysics, 2012, 55(7):2441-2449.
[12] 李兴旺, 白超英, 李晓玲. 四面体单元剖分下三维各向异性TI介质中多次波射线追踪[J]. 石油地球物理勘探, 2017, 52(1):48-55. Li Xingwang, Bai Chaoying, Li Xiaoling. Multiples Raytracing in 3D Anisotropic TI Media with a Tetrahedron Cell Model[J]. Oil Geophysical Prospecting, 2017, 52(1):48-55.
[13] 李晓玲, 白超英, 胡光义. 起伏层状TI介质中多次波射线追踪[J]. 石油地球物理勘探, 2013, 48(6):924-931. Li Xiaoling, Bai Chaoying, Hu Guangyi. Multiple Ray Tracing in an Undulated Layered TI Media[J]. Oil Geophysical Prospecting, 2013, 48(6):924-931.
[14] 高亮, 李幼铭, 陈旭荣,等. 地震射线辛几何算法初探[J]. 地球物理学报,2000, 43(3):402-410. Gao Liang, Li Youming, Chen Xurong,et al. An Attempt to Seismic Ray Tracing with Symplectic Algorithm[J]. Chinese Journal of Geophysics, 2000, 43(3):402-410.
[15] 秦孟兆, 陈景波. Maslov渐近理论与辛几何算法[J]. 地球物理学报, 2000, 43(4):522-533. Qin Mengzhao, Chen Jingbo. Maslov Asymptotic Theory and Symplectic Algorithm[J]. Chinese Journal of Geophysics, 2000, 43(4):522-533.
[16] Cameron M, Fomel S, Sethian J. Time-to-Depth Conversion and Seismic Velocity Estimation Using Time-Migration Velocity[J]. Geophysics, 2008, 73(5):205-210.
[17] Rawlinson N, Sambridge M. Multiple Reflection and Transmission Phases in Complex Layered Media Using a Multistage Fast Marching Method[J]. Geophysics, 2004, 69(5):1338-1350.
[18] Rawlinson N, Sambridge M, Saygin E. A Dynamic Objective Function Technique for Generating Multiple Solution Models in Seismic Tomography[J]. Geophysical Journal International, 2008, 174(1):295-308.
[19] Hao Q, Alkhalifah T. An Acoustic Eikonal Equation for Attenuating Transversely Isotropic Media with a Vertical Symmetry Axis[J]. Geophysics, 2017, 82(1):C9-C20.
[20] Sethian J A. AFast-Marching Level Set Method for Monotonically Advancing Fronts[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(4):1591-1595.
[21] Sethian J A. Level Set Methods and Fast Marching Method[M]//Sethian J A. Level Set Methods and Fast Marching Methods. London:Cambridge University Press, 1999:400.
[22] Alkhalifah T, Fomel S. Implementing the Fast Marching Eikonal Solver:Spherical Versus Cartesian Coordinates[J]. Geophysical Prospecting, 2010, 49(2):165-178.
[23] Popovici A M, Sethian J A. 3-D Imaging Using Higher Order Fast Marching Traveltimes[J]. Geophysics, 2002, 67(10):604-609.
[24] Rawlinson N,Sambridge M. Wave Front Evolution in Strongly Heterogeneous Layered Media Using the Fast Marching Method[J]. Geophysical Journal of the Royal Astronomical Society, 2004, 156(3):631-647.
[25] Rawlinson N,Sambridge M, Rawlinson N, et al. The Fast Marching Method:An Effective Tool for Tomographic Imaging and Tracking Multiple Phases in Complex Layered Media[J]. Exploration Geophysics, 2005, 36(4):341-350.
[26] De Kool M, Rawlinson N,Sambridge M. A Practical Grid-Based Method for Tracking Multiple Refraction and Reflection Phases in Three-Dimensional Heterogeneous Media[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 167(1):253-270.
[27] 张文生, 何樵登, 朱建伟,等. 横向各向同性介质中群速度的计算[J]. 物探化探计算技术, 1997,19(2):97-102. Zhang Wensheng, He Qiaodeng, Zhu Jianwei, et al. Calculation of Group Velocity in Transversely Isotropic Media[J]. Geophysical and Geochemical Exploration Technology, 1997, 19(2):97-102.
[28] 董良国, 魏建新. 横向各向同性介质中弹性波的物理模拟[J]. 石油物探, 1999, 38(1):76-84. Dong Liangguo, Wei Jianxin. Physical Simulation of Elastic Waves in Transversely Isotropic Media[J]. Petroleum Geophysical Exploration, 1999, 38(1):76-84.
[29] 孟庆生, 何樵登, 王德利. 均匀横向各向同性介质中P波及SV波的射线规律[J]. 吉林大学学报(地球科学版), 2002, 32(4):378-381. Meng Qingsheng, He Qiaodeng, Wang Deli. Ray Law of P Wave and SV Wave in Uniform Transversely Isotropic Medium[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(4):378-381.
[30] 张建中. 三维TI介质中P波NMO速度及VSP走时联合反演[D]. 北京:中国地震局地质研究所, 2005. Zhang Jianzhong. P-Wave NMO Velocity and VSP Travel Time Joint Inversion in 3D TI Media[D]. Beijing:Institute of Geology, China Earthquake Administration, 2005.
[31] 郝奇. VTI介质速度和各向异性参数建模研究[D]. 长春:吉林大学, 2010. Hao Qi. Modeling of Velocity and Anisotropy Parameters of VTI Media[D]. Changchun:Jilin University, 2010.
[32] 白海军, 孙赞东, 王学军. 基于波前构建法的TTI介质射线追踪[J]. 石油地球物理勘探, 2011,46(a01):1-6. Bai Haijun, Sun Zandong, Wang Xuejun. TTI Media Ray Tracing Based on Wavefront Construction[J]. Oil Geophysical Prospecting, 2011, 46(a01):1-6.
[33] Alkhalifah T. Acoustic Approximations for Seismic Processing in Transversely Isotropic Media[J]. Geophysics, 1998, 63(2):623-631. doi:10.1190/1.1444361.
[34] Bender C M, Orszag S A. Advanced Mathematical Methods for Scientists and Engineers[M]. London:McGraw-Hill,1999.
[35] Alkhalifah T. Scanning Anisotropy Parameters in Complex Media[J]. Geophysics, 2011, 76(2):U13-U22. doi:10.1190/1.3553015.
[1] 孙章庆, 汪登科, 韩复兴. 复杂海底各种地震波的射线追踪与运动学特征[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1169-1181.
[2] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[3] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[4] 杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑. 全拖曳式深海直流电阻率法三维任意各向异性正演模拟[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1845-1853.
[5] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[6] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[7] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[8] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[9] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[10] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[11] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[12] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[13] 莫绍星, 龙星皎, 李瀛, 郑菲, 施小清, 张可霓, 赵良. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658.
[14] 李继明,左三胜. 裂隙岩体岩石质量指标(RQD)的空间变化特征[J]. 吉林大学学报(地球科学版), 2014, 44(3): 946-953.
[15] 张振波,轩义华,刘宾. 基于各向异性理论的深水区地震资料叠前处理技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1031-1038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴新伟,刘正宏,徐仲元. 大青山逆冲推覆构造带中劈理特征及其成因[J]. J4, 2005, 35(05): 564 -569 .
[2] 张振亮,黄智龙,饶 冰,管 涛,严再飞. 会泽铅锌矿床的成矿流体来源:来自水-岩反应的证据[J]. J4, 2005, 35(05): 587 -592 .
[3] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .
[4] 匡永生,赵书跃,秦秀峰,马江水,刘旭光,李仰春, 张 昱. 大兴安岭北段早石炭世洋岛型玄武岩的确立及成因意义[J]. J4, 2005, 35(04): 423 -0429 .
[5] 史建南,姜建群,陈富新,顾国忠. 大民屯凹陷超压发育机制及其成藏意义[J]. J4, 2005, 35(06): 745 -0750 .
[6] 孔建,黄继国,高艳娇,贾国元,范廷玉. 城市机动车尾气中NOx污染的数学模式研究[J]. J4, 2005, 35(06): 782 -0785 .
[7] 张凤旭,孟令顺,张凤琴,杨 恕,赵承民. 重力位余弦变换谱基本特征[J]. J4, 2006, 36(02): 274 -0278 .
[8] 张伟红,赵勇胜,邸志强,郭晓东,张文静,张 楠. 基于ArcGIS Engine的地下水资源及其地质环境信息系统设计与实现[J]. J4, 2006, 36(04): 574 -577 .
[9] 潘殿琦,张祖培,潘殿彩,陈义民,徐 瑞. 人工冻土纵波波速与温度和含水率的关系[J]. J4, 2006, 36(04): 588 -591 .
[10] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .