吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 222-230.doi: 10.13278/j.cnki.jjuese.20190144

• 地质工程与环境工程 • 上一篇    

基于深度学习的旧金山湾水质预测

王新民1,2, 张超超1   

  1. 1. 长春工业大学数学与统计学院, 长春 130012;
    2. 长春工业大学应用数学研究所, 长春 130012
  • 收稿日期:2019-07-21 发布日期:2021-02-02
  • 作者简介:王新民(1957-),男,教授,博士生导师,主要从事大数据分析方面的研究,E-mail:wxm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51278065)

Water Quality Prediction of San Francisco Bay Based on Deep Learning

Wang Xinmin1,2, Zhang Chaochao1   

  1. 1. College of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China;
    2. Institute of Applied Mathematics, Changchun University of Technology, Changchun 130012, China
  • Received:2019-07-21 Published:2021-02-02
  • Supported by:
    Supported by the National Natural Science Foundation of China(51278065)

摘要: 传统的水质预测模型计算复杂,且在大对流情况下会引发误差,对于大数据时代下智能化的水质预测问题并不适用。本文针对旧金山湾地表水质研究区的数据资料,利用数据分析、统计检验、深度学习时序模型等技术方法对该研究区的水质进行研究,根据主成分信息构建了长短时记忆(LSTM)循环神经网络模型,对研究区的5个地表水质采样站点进行了水质预测。结果表明:长短时记忆循环神经网络模型通过门控制循环和记忆单元结构,有效控制传入模型的输入特征,从而降低模型的复杂度;双层长短时记忆循环神经网络模型较单层长短时记忆循环神经网络模型的预测精度平均提高5.3%。利用LSTM模型可以对旧金山湾地表水质进行有效评价。

关键词: 水质预测, 深度学习, 地表水, 统计检验, 数据分析

Abstract: The traditional water quality prediction model is complicated in calculation and will cause errors in the case of large convection, so it is not applicable to intelligent water quality prediction in the era of big data. Based on the data of San Francisco Bay surface water quality research area, the authors studied the water quality of the research area by using data analysis, statistical testing, deep learning time series models,and other technical methods. Based on the principal component information, a long short term memory(LSTM) circulation neural network model was constructed, and further,the water quality of 5 surface water sampling sites was predicted. The results show that the long short term memory cyclic neural network model can effectively control the loop and memory unit structure through gates and the input characteristics of the incoming model, thereby reducing the complexity of the model. Moreover, the prediction accuracy of the two-layer long and short-term memory cyclic neural network model is 5.3 % higher than that of the single-layer long and short-term memory cyclic neural network model.

Key words: water quality prediction, deep learning, surface water, statistical test, data analysis

中图分类号: 

  • X832
[1] Kazakis N, Mattas C, Pavlou A, et al. Multivariate Statistical Analysis for the Assessment of Groundwater Quality Under Different Hydrogeological Regimes[J]. Environmental Earth Sciences, 2017, 76:1-13.
[2] 张兆吉,费宇红,郭春艳,等.华北平原区域地下水污染评价[J]. 吉林大学学报(地球科学版), 2012,42(5):1456-1461. Zhang Zhaoji, Fei Yuhong, Guo Chunyan, et al. Evaluation of Groundwater Pollution in the North China Plain[J]. Journal of Jilin University(Earth Science Edition), 2012,42(5):1456-1461.
[3] 余文忠, 唐德善, 陆廷春. 熵权属性识别法在地下水水质评价中的应用[J]. 水电能源科学, 2013(7):41-43. Yu Wenzhong, Tang Deshan, Lu Tingchun. Application of Entropy Weight Attribute Recognition Method in Groundwater Quality Evaluation[J]. Hydroelectric Energy Science, 2013(7):41-43.
[4] Hosseini-Moghari S M, Ebrahimi K, Azarnivand A. Groundwater Quality Assessment with Respect to Fuzzy Water Quality Index (FWQI):An Application of Expert Systems in Environmental Monitoring[J]. Environmental Earth Sciences, 2015, 74(10):7229-7238.
[5] Kumar N V, Mathew S, Swaminathan G. Multifactorial Fuzzy Approach for the Assessment of Groundwater Quality[J]. Journal of Water Resource and Protection, 2010, 2(6):597-608.
[6] 虞未江,贾超,狄胜同,等.基于综合权重和改进物元可拓评价模型的地下水水质评价[J].吉林大学学报(地球科学版), 2019, 49(2):539-547. Yu Weijiang, Jia Chao, Di Shengtong, et al. Groundwater Quality Evaluation Based on Comprehensive Weight and Improved Matter Element Extension Evaluation Model[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2):539-547.
[7] Przydatek G, Kanownik W. Impact of Small Municipal Solid Waste Landfill on Groundwater Quality[J]. Environmental Monitoring and Assessment, 2019, 191(3):169.
[8] 韩彰, 陈健, 李经纬, 等. 改进物元可拓法在水闸工程安全综合评估中的应用[J]. 水力发电, 2015, 41(4):82-85. Han Zhang, Chen Jian, Li Jingwei, et al. Application of Improved Matter Element Extension Method in Comprehensive Safety Assessment of Sluice Engineering[J]. Hydroelectric Power, 2015, 41(4):82-85.
[9] 李巧, 周金龙, 高业新, 等. 新疆北部平原区2003-2011年地下水水质变化特征[J]. 地学前缘, 2014, 21(4):124-134. Li Qiao, Zhou Jinlong, Gao Yexin, et al. Variation Characteristics of Groundwater Quality in the Northern Plain of Xinjiang from 2003 to 2011[J]. Earth Science Frontiers, 2014, 21(4):124-134.
[10] 何振强,方诗标,陈永明,等.钱塘江感潮河段污染物迁移扩散数值分析[J].环境科学学报,2017,37(5):1668-1673. He Zhenqiang, Fang Shibiao, Chen Yongming, et al. Numerical Analysis of Contaminant Migration and Diffusion in the Tidal River Section of Qiantang River[J]. Journal of Environmental Science, 2017,37(5):1668-1673.
[11] 杨佳, 钱会. 时间序列分析在地下水位动态预测中的应用[J]. 水资源与水工程学报, 2015(1):58-62. Yang Jia, Qian Hui. Application of Time Series Analysis in Dynamic Prediction of Groundwater Level[J]. Journal of Water Resources and Water Engineering, 2015(1):58-62.
[12] Najafabadi M M, Villanustre F, Khoshgoftaar T M. Deep Learning Applications and Challenges in Big Data Analytics[J]. Journal of Big Data, 2015, 2(1):1-21.
[13] Hao X, Zhang G, Ma S. Deep Learning[J]. International Journal of Semantic Computing, 2016, 10(3):417-439.
[14] Wu Z Y, El-Maghraby M, Pathak S. Applications of Deep Learning for Smart Water Networks[J]. Procedia Engineering, 2015, 119:479-485.
[15] 姚俊杨, 许继平, 王小艺,等. 基于深度学习的湖库藻类水华预测研究[J]. 计算机与应用化学, 2015, 32(10):112-115. Yao Junyang, Xu Jiping, Wang Xiaoyi, et al. Prediction of Algal Blooms in Lakes Based on Deep Learning[J]. Journal of Computers and Applied Chemistry, 2015, 32(10):112-115.
[16] Solanki A, Agrawal H, Khare K. Predictive Analysis of Water Quality Parameters using Deep Learning[J]. International Journal of Computer Applications, 2015, 125(9):29-34.
[17] 田亚兰. 水质预测的粒计算求解与深度学习方法[D].重庆:重庆邮电大学,2016. Tian Yalan. Granular Calculation and Deep Learning Method for Water Quality Prediction[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2016.
[18] 王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017,68(5):1987-1997. Wang Gongming, Li Wenjing, Qiao Junfei. Prediction of Total Phosphorus in Effluent Based on PLSR Adaptive Depth Belief Network[J]. CIESC Journal, 2017,68(5):1987-1997.
[19] Robusto C C. The Cosine-Haversine Formula[J]. American Mathematical Monthly, 1957, 64(1):38.
[20] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[1] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[2] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
[3] 吴志伟,宋汉周. 由温度时序资料反演地下水流速的两种解析解及其比较[J]. 吉林大学学报(地球科学版), 2014, 44(2): 610-618.
[4] 王恩|束龙仓|刘波. 地下水系统对水资源开发利用方案的时空响应[J]. J4, 2010, 40(3): 617-622.
[5] 高彦伟,董德明,陈殿友,张岩坤,韩晓华. 时域克里格方法在地表水水质预测中的应用[J]. J4, 2008, 38(3): 444-0447.
[6] 陈定贵,周德民,吕宪国. 长春城市发展过程中地表水体空间格局演变特征[J]. J4, 2008, 38(3): 437-0443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!