吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 781-799.doi: 10.13278/j.cnki.jjuese.20190159

• 地质与资源 • 上一篇    

大兴安岭西坡比利亚谷银铅锌多金属矿床成因

梁小龙1, 孙景贵1, 邱殿明2, 徐智涛1, 谷小丽3, 任泽宁1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 吉林大学学报编辑部, 长春 130026;
    3. 长春汽车工业高等专科学校, 长春 130013
  • 收稿日期:2019-08-09 发布日期:2020-05-29
  • 通讯作者: 孙景贵(1961-),男,教授,博士生导师,主要从事地球化学及热液矿床的研究与教学工作,E-mail:sunjinggui@jlu.edu.cn E-mail:sunjinggui@jlu.edu.cn
  • 作者简介:梁小龙(1994-),男,硕士研究生,主要从事浅成热液矿床的研究,E-mail:1573095518@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0601306);国家自然科学基金项目(41390444);中国地质调查局项目(DD20160344)

Genesis of Biliya Valley Ag-Pb-Zn Polymetallic Deposit on Western Slope of Great Xing'an Range

Liang Xiaolong1, Sun Jinggui1, Qiu Dianming2, Xu Zhitao1, Gu Xiaoli3, Ren Zening1   

  1. 1. College of Earth Science, Jilin University, Changchun 130061, China;
    2. Editorial Department of Journal of Jilin University, Changchun 130026, China;
    3. Changchun Automobile Industry Institute, Changchun 130013, China
  • Received:2019-08-09 Published:2020-05-29
  • Supported by:
    Supported by National Key Research and Development Project (2017YFC0601306), National Natural Science Foundation of China (41390444) and Project of China Geological Survey (DD20160344)

摘要: 比利亚谷银铅锌多金属矿床位于大兴安岭西坡的得尔布干成矿带,它是近些年来在该区新发现的一座大型银铅锌多金属矿床。该矿床矿体主要呈脉状、细脉浸染状、角砾状赋存于塔木兰沟组中—基性火山岩和满克头鄂博组酸性火山岩中的NW向断裂体系内。根据矿石的结构、构造以及矿物之间的共生组合、穿切关系,将成矿过程从早到晚划分为硅化石英+黄铁矿阶段(Ⅰ)、石英+黄铁矿+闪锌矿阶段(Ⅱ)、石英+黄铁矿+闪锌矿+方铅矿+辉银矿+黄铜矿±黝铜矿阶段(Ⅲ)、石英+黄铁矿+方解石+萤石±蛋白石阶段(Ⅳ);详细的石英、闪锌矿流体包裹体研究揭示:成矿早阶段(Ⅰ、Ⅱ)石英中发育WL型、C型包裹体,包裹体完全均一温度为188~254℃,盐度(w(NaCl))为1.83%~4.79%,密度为0.81~0.94 g/cm3,属于中低温、低盐度的H2O-NaCl-CO2体系;成矿主阶段(Ⅲ)石英、闪锌矿中发育WL型包裹体,包裹体完全均一温度为160~188℃,盐度为3.69%~7.15%,密度为0.92~0.96 g/cm3,属于低温、中低盐度的H2O-NaCl-CH4体系;成矿晚阶段(Ⅳ)石英中发育WL型、L型包裹体,WL型包裹体完全均一温度为130~165℃,盐度为1.22%~3.53%,密度为0.93~0.95 g/cm3,属于低温、低盐度的H2O-NaCl体系。流体包裹体H-O同位素地球化学特征揭示:早阶段流体的δ18OH2O-SMOW值为-6.3‰~-5.9‰,δDH2O-SMOW值为-163.4‰~-162.7‰;成矿主阶段流体的δ18OH2O-SMOW值为-14.4‰,δDH2O-SMOW值为-165.4‰~-162.0‰;成矿晚阶段流体的δ18OH2O-SMOW值为-19.1‰,δDH2O-SMOW值为-150.7‰;硫化物Pb同位素比值分别为206Pb/204Pb=18.435~18.513、207Pb/204Pb=15.579~15.675、208Pb/204Pb=38.283~38.603。这种特征揭示,该矿床成矿流体为低温、低盐度的H2O-NaCl-CH4体系,早期为残余岩浆水和大气降水混合、中—晚期大气降水逐渐增加;成矿物质源于壳幔混合源区;成矿过程以流体混合方式导致成矿元素聚集和沉淀,矿床成因类型为与陆相火山-次火山作用有关的低硫化型浅成热液铜(银)铅锌多金属矿床;其整体与大兴安岭西坡同类型矿床相似,成矿作用发生在早白垩世(131.3 Ma),与古太平洋板块俯冲产生的弧后伸展环境相关。

关键词: 流体包裹体, H-O-Pb同位素, 比利亚谷银铅锌多金属矿床, 内蒙古

Abstract: Biliya Valley Ag-Pb-Zn deposit is located in the Derbugan metallogenic belt on the western slope of Great Xing'an Range, which was discovered in recent years. The orebody types are vein, veinlet disseminated, and breccia. The ore bodies occur mainly in the Middle Jurassic intermediate-basic volcanic rocks of Tamulangou Formation and the felsic volcanic rocks of Manketouebo Formation, and are controlled by the NW-extending faults. According to the mineral association, ore fabric, and vein body interpenetration, the ore formed in four stages:silicified quartz + pyrite stage (Ⅰ),quartz + pyrite + sphalerite stage (Ⅱ),quartz+pyrite+sphalerite+galena+argentite+chalcopyrite±tetrahedrite stage (Ⅲ), and quartz + pyrite + calcite + fluorite ±opal stage (Ⅳ). The study on the fluid inclusions(FIs) of quartz and sphalerite shows that the FIs in quartz of the early stages (Ⅰ and Ⅱ) are composed of liquid-rich (WL type) and CO2-H2O (C type) types. Their homogenization temperature, salincty, and density vary from 188 to 254℃, 1.83% to 4.79%, and 0.81 to 0.94 g/cm3 respectively, and the fluid in this stage belongs to H2O-NaCl-CO2 system with low temper ature and medium-low salinity. The FIs in quartz and sphalerite of the main stage (Ⅲ) are composed of liquid-rich (WL type) type, their homogenization temperature, salincty, and density vary from 160 to 188℃, 3.69% to 7.15%, and 0.92 to 0.96 g/cm3 respectively, and the fluid in this stage generally belongs to H2O-NaCl-CH4 system with medium-low temperature and low salinity. The FIs in quartz of the late stage (Ⅳ) are composed of liquid-rich (WL type) and liquid (L type) types, their homogenization temperature, salincty, and density vary from 130 to 165℃, 1.22% to 3.53%, and 0.93 to 0.95 g/cm3 respectively, and the fluid in this stage generally belongs to H2O-NaCl system with low temperature and low salinity. The hydrogen-oxygen isotope geochemical characteristics of fluid inclusions reveal that the δ18OH2O-SMOW and δDH2O-SMOW values of ore-forming fluids in the early stages vary from -6.3‰ to -5.9‰ and -163.4‰ to -162.7‰, respectively. The δ18OH2O-SMOW value of ore-forming fluids in the main stage is -14.4‰, and δDH2O-SMOW values of ore-forming fluids in the main stage vary from -165.4‰ to -162.0‰. The δ18OH2O-SMOW and δDH2O-SMOW values of ore-forming fluids in the late stage are -19.1‰ and -150.7‰, respectively. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the lead isotope composition of metal sulfides vary from 18.435 to 18.513, 15.579 to 15.675, and 38.283 to 38.603, respectively. These features reveal that the ore-forming fluids of the deposit belong to H2O-NaCl-CH4 system with low temperature and low salinity; and the initial ore-forming fluid was mainly derived from the magmatic water, which was then mixed with meteoric water during mineralization; the ore-forming materials came from a mixed crustal and mantle source. Biliya Valley deposit is a low-sulfidation epithermal Ag-Pb-Zn polymetallic deposit, which is related to the volcanic-subvolcanic activity similar to the same type of deposits in the region. The mineralization occurred in Early Cretaceous (131.3 Ma), in a back-arc extension related subduction of the Paleo-Pacific plate.

Key words: fluid inclusion, H-O-Pb isotopes, Biliya Valley Ag-Pb-Zn polymetallic deposit, Inner Mongolia

中图分类号: 

  • P618.42
[1] 陈喜峰,彭润民.铅锌矿床类型划分评析[J].化工矿产地质,2007,29(4):209-214. Chen Xifeng, Peng Runmin. Analysis on the Classification of Lead-Zinc Deposits[J]. Geology of Chemical Minerals, 2007, 29(4):209-214.
[2] 池贵军.内蒙古得耳布尔银矿床物质组分特征[J].矿产与地质,2003,17(增刊1):439-442. Chi Guijun. Composition of Silver Deposit in Deerbuer Inner Mongolia[J]. Mineral Resource and Geology, 2003, 17(Sup.1):439-442.
[3] 毛爱生,邢琳,刘智明.得耳布尔银铅锌矿床地质特征及找矿标志[J].吉林地质,2007,26(3):18-21. Mao Aisheng, Xing Lin, Liu Zhiming. Geologic Features, Ore-Hunting Indicator of the Deerbuer Ag-Pb-Zn Deposit[J]. Jilin Geology, 2007, 26(3):18-21.
[4] 李进文,梁玉伟,王向阳,等.内蒙古二道河子铅锌矿成因研究[J].吉林大学学报(地球科学版),2011,41(6):1745-1754,1783. Li Jinwen, Liang Yuwei, Wang Xiangyang, et al. The Origin of the Erdaohezi Lead-Zinc Deposit, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6):1745-1754, 1783.
[5] 明珠,孙景贵,闫佳,等.内蒙古东部得耳布尔铅锌矿床安山岩的形成环境和岩浆热液演化史:锆石U-Pb定年[J].世界地质,2015,34(3):590-598. Ming Zhu, Sun Jinggui, Yan Jia, et al. Forming Environment and Magmatic-Hydrothermal Evolution History of Andesite in Deerbuer Lead-Zinc Deposit of Eastern Inner Mongolia:Zircon U-Pb Dating[J]. Global Geology, 2015, 34(3):590-598.
[6] 王忠禹,孙景贵,明珠,等.内蒙古东部得耳布尔铅锌矿床地质特征、控矿因素及找矿方向[J].黄金,2016,37(7):21-24. Wang Zhongyu, Sun Jinggui, Ming Zhu, et al. Geological Characteristics, Ore Controlling Factors and Prospecting Direction of Derbur Pb-Zn Deposit in Eastern Inner Mongolia[J]. Gold, 2016, 37(7):21-24.
[7] 成来顺,黎洪秩,尹力,等.二道河子银铅锌矿床地质特征及找矿方向研究[J].黄金科学技术,2016,24(3):58-63. Cheng Laishun, Li Hongzhi, Yin Li, et al. Research on Geological Characteristics and Prospecting Direction of Erdaohezi Ag-Pb-Zn Deposit in Inner Mongolia[J]. Gold Science and Technology, 2016, 24(3):58-63.
[8] 李兴,刘云华,关强兵,等.内蒙古二道河子铅锌矿床构造控矿作用及找矿方向[J].地球科学与环境学报,2016,38(6):791-802. Li Xing, Liu Yunhua, Guan Qiangbing, et al. Tectonic Ore-Controlling and Prospecting Direction of Erdaohezi Pb-Zn Deposit in Inner Mongolia[J]. Journal of Earth Sciences and Environment, 2016, 38(6):791-802.
[9] 宋宗维,徐志涛,刘晨.大兴安岭北部二道河子铅锌矿区赋矿火山岩元素地球化学特征及地质意义[J].吉林地质,2017,36(3):37-46. Song Zongwei, Xu Zhitao, Liu Chen. Elemental Geochemical Characteristics and Geological Significance of Ore Hosting Volcanic Rocks in Erdaohezi Lead-Zinc Mining Area, Northern Great Xing'an Range[J]. Jilin Geology, 2017, 36(3):37-46.
[10] 赵岩,吕骏超,张朋,等.大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义[J].地质学报,2018,92(1):142-153. Zhao Yan, Lü Junchao, Zhang Peng, et al. Characteristics of Ore-Forming Fluids in the De'rbur Pb-Zn-Ag Deposit in the NW Great Hinggan Mountains and Its Significance[J]. Acta Geoscientica Sinica, 2018, 92(1):142-153.
[11] Xu Z T, Liu Y, Sun J G, et al. Nature and Ore Formation of the Erdaohezi Pb-Zn Deposit in the Great Xing'an Range, NE China[J]. Ore Geology Reviews, 2020. doi.org/10.1016/j.oregeorev.2020.103385.
[12] 柳立群,赵东波,马忠林,等.得耳布干成矿区北段比利亚银铅锌矿床地质特征及成因研究[J].资源环境与工程,2012,26(3):219-223. Liu Liqun, Zhao Dongbo, Ma Zhonglin, et al. Study on Geological Characteristics and Genesis of the Biliya Ag-Pb-Zn Mineral Deposits in the Northern of Derbugan Metallogenic Province[J]. Resources Environment & Engineering, 2012, 26(3):219-223.
[13] 吴涛涛,赵东芳,邵军,等.内蒙古比利亚谷铅锌银矿床地质地球化学特征及成因[J].中国地质,2014,41(4):1242-1252. Wu Taotao, Zhao Dongfang, Shao Jun, et al. Geological and Geochemical Characteristics and Genesis of the Biliyagu Lead-Zinc-Silver Deposit, Inner Mongolia[J]. Geology in China, 2014, 41(4):1242-1252.
[14] 马玉波,邢树文,张彤,等.内蒙古额尔古纳地区比利亚谷大型铅锌银矿床稀土微量元素地球化学特征及成矿意义[J].地质学报,2015,89(10):1841-1852. Ma Yubo, Xing Shuwen, Zhang Tong, et al. Geochemical Characteristics of REE and Trace Elements in the Biliyagu Large Pb-Zn Ag Deposit of Erguna Area, Inner Mongolia and Their Metallogenic Significance[J]. Acta Geologica Sinica, 2015, 89(10):1841-1852.
[15] 段明新,任云生,侯召硕,等.内蒙古额尔古纳地区比利亚谷铅锌(银)矿床成矿流体特征与矿床成因[J].矿物岩石,2014,34(2):60-67. Duan Mingxin, Ren Yunsheng, Hou Zhaoshuo, et al. Ore-Forming Fluid and Ore Genesis of the Biliya Valley Lead-Zinc(Silver) Deposit in Erguna Region, Inner Mongolia[J]. Journal of Mineral Petrology, 2014,34(2):60-67.
[16] 高嵩. 内蒙古大兴安岭比利亚谷铅锌矿床地质特征与成因研究[D].长春:吉林大学,2014. Gao Song. Study on Geological Characteristics and Metallogenesis of Biliyagu Pb-Zn Deposit in Da Hinggan Mts, Inner Mongolia[D]. Changchun:Jilin University, 2014.
[17] Gou J, Sun D Y, Liu Y J, et al. Geochronology, Petrogenesis, and Tectonic Setting of Mesozoic Volcanic Rocks, Southern Manzhouli Area, Inner Mongolia[J]. International Geology Review, 2013, 55(8):1029-1048.
[18] Bai L A, Sun J G, Gu A L, et al. A Review of the Genesis, Geochronology, and Geological Significance of Hydrothermal Copper and Associated Metals Deposits in the Great Xing'an Range, NE China[J]. Ore Geology Reviews, 2014, 61:192-203.
[19] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121(1):115-135.
[20] Meng Q R. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract[J]. Tectonophysics, 2003, 369(3/4):155-174.
[21] 武广. 大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D].长春:吉林大学,2006. Wu Guang. Metallogenic Setting and Metallogenesis of Nonferrous-Precious Metals in Northern Da Hinggan Mountain[D]. Changchun:Jilin University, 2006.
[22] 张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823. Zhang Xingzhou, Yang Baojun, Wu Fuyuan, et al. The Lithosphere Structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) Region, Nor-theastern China[J]. Geology in China, 2006, 33(4):816-823.
[23] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D].武汉:中国地质大学,2009. Zhang Jiheng. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China[D]. Wuhan:China University of Geosciences, 2009.
[24] 徐美君,许文良,孟恩,等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报,2011,30(9):1321-1338. Xu Meijun, Xu Wenliang, Meng En, et al. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area, Northeastern Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(9):1321-1338.
[25] 孟恩,许文良,杨德彬,等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报,2011,27(4):1209-1226. Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4):1209-1226.
[26] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77(17):3057-3067.
[27] Potter R W, Clynne M A, Brown D L. Freezing Point Depression of Aqueous Sodium Chloride Solutions[J]. Econ Geol, 1978, 73:284-285.
[28] 刘斌.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用[J].地质论评,2001,47(6):617-622. Liu Bin. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications[J]. Geological Review, 2001, 47(6):617-622.
[29] Roedder E. Fluid Inclusions:Reviews in Mineralogy[R]. Michigan:Mineralogical Society of America, 1984:1-644.
[30] 李铁刚. 内蒙古甲乌拉-查干布拉根铅锌银矿田成矿作用[D].北京:中国地质大学(北京),2016. Li Tiegang. Metallogenesis of the Jiawula-Chaganbulagen Pb-Zn-Ag Orefield, Inner Mongolia, China[D]. Beijing:China University of Geosciences (Beijing), 2016.
[31] Zartman R E, Doe B R. Plumbotectonics:The Model[J]. Tectonophysics, 1981, 75:135-162.
[32] 王莉娟.流体包裹体成分分析研究[J].地质论评,1998,44(5):496-501. Wang Lijuan. Analysis and Study of the Composition of Fluid Inclusions[J]. Geological Review, 1998, 44(5):496-501.
[33] 卢焕章,郭迪江.流体包裹体研究的进展和方向[J].地质论评,2000,46(4):385-392. Lu Huanzhang, Guo Dijiang. Progress and Trends of Researches on Fluid Inclusions[J]. Geological Review, 2000, 46(4):385-392.
[34] 胡圣虹,胡兆初,刘勇胜,等.单个流体包裹体元素化学组成分析新技术:激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)[J].地学前缘,2001,8(4):434-440. Hu Shenghong, Hu Zhaochu, Liu Yongsheng, et al. New Techniques of Major and Minor Elemental Analysis in Individual Fluid Inclusion-Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)[J]. Earth Science Frontiers, 2001, 8(4):434-440.
[35] 李晓春,范宏瑞,胡芳芳,等.单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J].矿床地质,2010,29(6):1017-1028. Li Xiaochun, Fan Hongrui, Hu Fangfang, et al. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and Its Application to Ore Deposits[J]. Mineral Deposits, 2010, 29(6):1017-1028.
[36] Hedenquist J W, Lowenstern J B. The Role of Magmas in the Formation of Hydrothermal Ore Deposits[J]. Nature, 1994, 370:519-527.
[37] 张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238. Zhang Qian, Pan Jiayong, Shao Shuxun. An Interpretation of Ore Lead Sources from Lead Isotopic Compositions of Some Ore Deposits in China[J]. Geochimica, 2000, 29(3):231-238.
[38] 毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188. Mao Jingwen, Xie Guiqing, Zhang Zuoheng, et al. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings[J]. Acta Petrologica Sinica, 2005, 21(1):169-188.
[39] Doe B R, Zartman R E. Plumbo Tectonics the Phanerozoic[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley Sons, 1979:509-567.
[40] Stacey J S, Kramers J D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model[J]. Earth and Planetary Science Letters, 1975, 26(2):207-221.
[41] 朱炳泉.地球科学中同位素体系理论与应用[M].北京:科学出版社,1998:1-330. Zhu Bingquan. Theory and Application of Isotopic System in Geosciences[M]. Beijing:Science Press, 1998:1-330.
[42] 翟德高,刘家军,王建平,等.内蒙古甲乌拉大型Pb-Zn-Ag矿床稳定同位素地球化学研究[J].地学前缘,2013,20(2):213-225. Zhai Degao, Liu Jiajun, Wang Jianping, et al. A Study of Stable Isotope Geochemistry of the Jiawula Large Pb-Zn-Ag Ore Deposit, Inner Mongolia[J]. Earth Science Frontiers, 2013, 20(2):213-225.
[43] 张斌. 内蒙古东珺铅锌银矿矿床地质特征及其成因研究[D].北京:中国地质科学院,2011. Zhang Bin. The Geological Features and Genesis of the Dongjun Lead-Zinc-Silver Deposit in Inner Mongolia, China[D]. Beijing:Chinese Academy of Geological Sciences, 2011.
[44] Hedenquist J W. Volcanic-Related Hydrothermal System in the Circum-Pacific Basin and Their Potential for Mineralization[J]. Mineral Geology, 1987, 37(3):347-364.
[45] Hedenquist J W. Exploration for Epithermal Gold Deposits[J]. Reviews in Economic Geology, 2000, 13(2):45-77.
[46] 闫佳.大兴安岭西坡二道河子铅锌矿床成因与成矿地质背景[D].长春:吉林大学,2016. Yan Jia. The Study on Metallogenic Geological Background and Ore Genesis of Erdaohezi Pb-Zn Deposit, the East Slope of the Great Xing'an Range[D]. Changchun:Jilin University, 2016.
[47] Li T G, Wu G, Liu J, et al. Fluid Inclusions and Isotopic Characteristics of the Jiawula Pb-Zn-Ag Deposit, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2015, 103:305-320.
[48] 解成波,刘明.查干布拉根银铅锌(金)矿床地质特征及成因类型[J].世界地质,2001,20(1):25-29. Xie Chengbo, Liu Ming. Geological Feathers and Genetic Type of Chaganbulagen Ag, Pb, Zn(Au) Deposit[J]. Global Geology, 2001, 20(1):25-29.
[49] 张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552. Zhang Dehui. Some New Advances in Ore-Forming Fluid Geochemistry on Boiling and Mixing of Fluids During the Processes of Hydrothermal Deposits[J]. Advances in Earth Science, 1997, 12(6):546-552.
[50] Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt:Geochronological and Geochemical Evidence from Granitoids and Rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49:234-248.
[51] 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013,29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rocks Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[52] Ouyang H G, Mao J W, Zhou Z, et al. Late Mesozoic Metallogeny and Intracontinental Magmatism, Southern Great Xing'an Range, Northeastern China[J]. Gondwana Research, 2015, 27(3):1153-1172.
[53] 古阿雷. 大兴安岭中东部浅成热液-斑岩铜多金属成矿系统成矿地质过程与成矿模式[D].长春:吉林大学,2016. Gu Alei. Study on the Mineralization Process and Metallogenic Model of Epithermal-Porphyry Copper-Polymetallic Mineralization System in the Central and Eastern of Great Xing'an Range, China[D]. Changchun:Jilin University, 2016.
[1] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[2] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
[3] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
[4] 杨帆, 汪岩, 那幅超, 付俊彧, 张广宇, 孙巍, 庞雪娇, 陈井胜, 刘淼, 李斌. 内蒙古白音诺尔铅锌矿床成矿时代及其地质意义——来自侵入岩地球化学及年代学的制约[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1696-1710.
[5] 吴猛, 李怡欣, 刘桂香. 黑龙江省老柞山金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1353-1364.
[6] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[7] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[8] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[9] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[10] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[11] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[12] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[13] 付俊彧, 汪岩, 钟辉, 宋维民, 孙巍, 那福超, 钱程, 杨雅军, 庞雪娇, 江山. 内蒙古突泉县牤牛海地区超镁铁质岩地球化学及源区特征[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1172-1186.
[14] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[15] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!