吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 473-482.doi: 10.13278/j.cnki.jjuese.20190259

• 地质工程与环境工程 • 上一篇    

寒区渠基黏土热参数最优概率分布

石梁宏, 李双洋   

  1. 中国科学院西北生态环境资源研究院冻土工程国家重点实验室, 兰州 730000
  • 收稿日期:2019-12-04 发布日期:2021-04-06
  • 通讯作者: 李双洋(1980-),研究员,博士,主要从事冻土力学与寒区岩土工程方面的研究工作,E-mail:lisy@lzb.ac.cn E-mail:lisy@lzb.ac.cn
  • 作者简介:石梁宏(1995-),工程师,主要从事寒区岩土工程方面的研究,E-mail:shilh@lzb.ac.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0405101);国家自然科学基金项目(41672315);西藏自治区科技计划项目(XZ201801-GB-07);中国科学院青年创新促进会项目(Y201975);冻土工程国家重点实验室自主研究课题(SKLFSE-ZQ-53)

Optimal Probability Distribution of Thermal Conductivity Parameters of Canal Foundation Clay in Cold Regions

Shi Lianghong, Li Shuangyang   

  1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2019-12-04 Published:2021-04-06
  • Supported by:
    Supported by the National Key R&D Program of China (2017YFC0405101), the National Natural Science Foundation of China (41672315),the Science and Technology Program of Tibet Autonomous Region (XZ201801-GB-07),the Program of Youth Innovation Promotion Association of CAS (Y201975) and the Foundation of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-53)

摘要: 为分析寒区渠基黏土热参数的随机分布特征及概率分布模型,以寒区渠基黏土的导热系数为样本,结合经典分布拟合法、多项式逼近法、最大熵法和正态信息扩散法,分别对寒区渠基黏土热参数的概率分布规律进行了研究。首先通过分析热参数的离散性,并比较概率分布曲线、拟合检验值和累计概率分布值,对不同方法描述热参数随机性的优劣进行了评价;然后,基于寒区渠基黏土热学参数对温度的敏感性,提出了一个可以达到理想拟合精度的寒区渠基黏土热参数概率推断的区间取值标准。研究结果表明:寒区渠基黏土的热参数具有随机变量的特征;正态信息扩散法可以描述热参数样本的随机波动性;在4种方法中,正态信息扩散法的拟合精度最高。使用3.5σ法,将[μ-3.5σμ+3.5σ](μ为随机变量的均值,σ为标准差)作为概率函数推断时的取值区间,同时考虑偏度的影响,可使得累计概率值达到1.000 0的精度,能够较准确地推断热参数的概率分布函数。

关键词: 渠道, 冻土, 热参数, 概率分布, 寒区

Abstract: In order to analyze the random distribution characteristics and probability distribution model, taking the thermal conductivity of canal foundation clay in cold regions as a sample, the probability distribution laws of the thermal parameters of frozen soils were inferred by using the classical distribution fitting method, polynomial method, maximum entropy method, and normal information diffusion method. Through analyzing the dispersion of thermal parameters and comparing the probability distribution curve, fitting test values, and cumulative probability distribution values, the advantages and disadvantages of different methods to describe the randomness of thermal parameters were evaluated. The results show that the thermal parameters of canal foundation clay are variable in cold regions. The random fluctuation of thermal parameters can be described by the normal information diffusion method. Among the four methods, the fitting precision of the normal information diffusion method is the highest. Based on the sensitivity of the thermal parameters of canal foundation clay to temperature, a standard with an ideal fitting precision is put forward for determining the probabilistic inference interval of the thermal parameters of frozen soils.

Key words: canal, frozen soils, thermal parameters, probability distribution, cold regions

中图分类号: 

  • TU411.2
[1] 刘德仁,张东,张世民. 北方寒冷地区封闭渡槽粘贴聚氨酯板提高保温效果[J]. 农业工程学报,2013,29(9):70-75. Liu Deren, Zhang Dong, Zhang Shimin. Increase Insulation Effect of Polyurethane Board Pasting on Closed Aqueduct Surface in Cold Regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9):70-75.
[2] 李杨,王清,王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版),2015,45(1):207-213. Li Yang, Wang Qing, Wang Tanhua. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1):207-213.
[3] 王正中,李甲林,陈涛,等. 弧底梯形渠道混凝土衬砌冻胀破坏的力学模型研究[J]. 农业工程学报,2008,24(1):18-23. Wang Zhengzhong, Li Jialin, Chen Tao, et al. Mechanics Models of Frost Heaving Damage of Concrete Lining Trapezoidal Canal with Arc-Bottom[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):18-23.
[4] 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版),2013,43(6):1904-1914. Zhang Ze, Ma Wei, Qi Jilin. Structure Evolution and Mechanism of Engineering Properties Change of Soils Under Effect of Freeze-Thaw Cycle[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6):1904-1914.
[5] Li Shuangyang, Zhang Mingyi, Tian Yibin, et al. Experimental and Numerical Investigations on Frost Damage Mechanism of a Canal in Cold Regions[J]. Cold Region Science and Technology, 2015, 116:1-11.
[6] 王正中. 梯形渠道砼衬砌冻胀破坏的力学模型研究[J]. 农业工程学报,2008,20(3):24-29. Wang Zhengzhong. Establishment and Application of Mechanics Model of Frost Heaving Damage of Concrete Lining Trapezoidal Open Canal[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 20(3):24-29.
[7] 齐吉琳,程国栋,Vermeer P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展,2005,20(8):887-893. Qi Jilin, Cheng Guodong, Vermeer P A. State of the Art of Influence of Freeze-Thaw on Engineering Properties of Soils[J]. Advances in Earth Sciences, 2005, 20(8):887-893.
[8] 周泓,张豫川,张泽,等. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. 岩土力学,2014,35(8):2241-2246. Zhou Hong, Zhang Yuchuan, Zhang Ze, et al. Changing Rule of Long-Term Strength of Frozen Loess Cohesion Under Impact of Freeze-Thaw Cycle[J]. Rock and Soil Mechanics, 2014, 35(8):2241-2246.
[9] 宿晓萍,王清,王文华,等. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版),2014,44(4):1244-1253. Su Xiaoping, Wang Qing, Wang Wenhua, et al. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4):1244-1253.
[10] 高平,张延军,方静涛,等. 浅层岩土室内、室外热物性测试的相关性[J]. 吉林大学学报(地球科学版),2014,44(1):259-267. Gao Ping, Zhang Yanjun, Fang Jingtao, et al. Correlation of Shallow Layer Rock and Soil Thermal Physical Tests in Laboratory and Field[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1):259-267.
[11] 李双洋,赖远明,张明义,等. 高温冻土弹性模量及强度分布规律研究[J]. 岩石力学与工程学报,2017,26(增刊2):4299-4305. Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Study on Distribution Laws of Eastic Modulus and Strength of Warm Frozen Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 26(Sup.2):4299-4305.
[12] 罗冲,殷坤龙,陈丽霞,等. 万州区滑坡滑带土抗剪强度参数概率分布拟合及优化[J]. 岩石力学与工程学报,2005,24(9):1588-1592. Luo Chong, Yin Kunlong, Chen Lixia, et al. Probability Distribution Fitting and Optimization of Shear Dtrength Parameters in Sliding Zone Along Horizontal-Stratum Landslides in Wanzhou City[J]. Chinese Journal of Rock Mechanical and Engineering, 2005, 24(9):1588-1592.
[13] 杨凯,刘东升,易前应,等. 重庆市岩石抗剪强度参数统计分析及应用[J]. 后勤工程学院学报,2008,24(2):18-21. Yang Kai, Liu Dongsheng, Yi Qianying, et al. Parameters Statistics Analysis and Application of Rock Sheering Strength in Chongqing[J]. Journal of Logistical Engineering University, 2008, 24(2):18-21.
[14] 崔洁,江权,冯夏庭,等.岩石抗剪强度参数的理论分布形态研究[J].岩石力学,2015,36(5):1261-1274. Cui Jie, Jiang Quan, Feng Xiating, et al. Theoretical Probability Distribution of Shear Strength Parameters for Rock[J]. Rock and Soli Mechanics, 2015, 36(5):1261-1274.
[15] 李小勇,张瑞婷,侯晓文,等. 太原粉质黏土工程性质指标概率特征的分析和研究[J]. 太原理工大学学报,2000, 31(3):254-258. Li Xiaoyong, Zhang Ruiting, Hou Xiaowen, et al. The Statistic Characteristics of Engineering Indexes for Taiyuan Silty Clay[J]. Journal of Taiyuan University of Technology, 2000, 31(3):254-258.
[16] Łydżba D, Różański A, Rajczakowska M, et al. Random Checkerboard Based Homogenization for Estimating Effective Thermal Conductivity of Fully Saturated Soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017(9):18-28.
[17] 吴晓光. 概率统计在高温冻土热学及力学性质研究中的应用[D]. 兰州:兰州大学,2013:10-23. Wu Xiaoguang. The Application of Probability and Statistics in the Study on Thermal and Mechanical Properties of Warm Frozen Soil[D]. Lanzhou:Lanzhou University, 2013:10-23.
[18] 石梁宏,李双洋,王冲,等. 冻土热物理性质的统计特征及分布规律研究[J]. 中南大学学报(自然科学版),2018,49(12):3060-3067. Shi Lianghong, Li Shuangyang, Wang Chong, et al. Study on Statistical Characters and Distribution Laws of Thermophysical Properties of Frozen Soil[J]. Journal of Central South University (Science and Technology), 2018,49(12):3060-3067.
[19] 宫凤强,黄天朗,李夕兵. 岩土参数最优概率分布推断方法及判别准则研究[J]. 岩土力学与工程学报,2016,36(12):2452-2460. Gong Fengqiang, Huang Tianlang, Li Xibing. Research on Approximation Method and Discriminative Criterion of the Optimal Probability Distribution of Geotechnical Parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 36(12):2452-2460.
[20] 苏永华,何满潮,孙晓明. 大子样岩土参数统计方法[J].岩土工程学报,2001,23(1):117-119. Su Yonghua, He Manchao, Sun Xiaoming. Approach on Asymptotic Approximations for Probability Density Function of Geotechnics Random Parameters[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1):117-119.
[21] 邓建,李夕兵,古德生.结构可靠度分析的多项式数值逼近法[J].计算力学学报,2002, 19(2):212-216. Deng Jian, Li Xibing, Gu Desheng. Numerical Approximation Method in Reliability Analysis of Engineering Structure[J]. Chinese Journal of Computational Mechanics, 2002, 19(2):212-216.
[22] 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 4版. 北京:高等教育出版社,2008. Sheng Zhou,Xie Shiqian, Pan Chengyi. Probability and Mathematical Statistics[M]. 4th ed. Beijing:High Education Press, 2008.
[23] 邓建,李夕兵,古德生.岩石力学参数概率分布的信息熵推断[J], 岩石力学与工程学报,2004, 23(13):2177-2181. Deng Jian, Li Xibing, Gu Desheng. Probability Rock Mechanics by Using Maximum Entropy Method[J]. Chinese Journal of Rock Mechanical and Engineering, 2004, 23(13):2177-2181.
[24] Huang F Q. Information Diffusion Techniques and Small-Sample Problem[J]. International Journal of Information Technology and Decision Making, 2002, 1(2):229-249.
[25] 宫凤强,李夕兵,邓建.小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报,2006,25(12):2549-2564. Gong Fengqiang, Li Xibing, Deng Jian. Probability Distribution of Samples of Geotechnical Parameters Using Normal Information Spread Method[J]. Chinese Journal of Rock Mechanical and Engineering, 2006, 25(12):2549-2564.
[26] 朱唤珍,李夕兵,宫凤强. 大样本岩土参数概率分布的正态信息扩散推断[J]. 岩土力学,2015,36(11):3275-3282. Zhu Huanzhen, Li Xibing, Gong Fengqiang. Assessment of Probability Distribution of Large Samples of Geotechnical Parameters by Using Normal Information Spread Estimation Method[J]. Rock and Soil Mechanics, 2015, 36(11):3275-3282.
[27] 马建全,李广杰,徐佩华,等.基于拉丁方抽样及K-S检验的边坡可靠性分析[J].岩土力学,2011,32(7):2153-2156. Ma Jianquan, Li Guangjie, Xu Peihua, et al. Reliability Analysis of Slope with Latin Hypercube Sampling and K-S Test[J]. Rock and Soil Mechanics, 2011, 32(7):2153-2156.
[28] 刘红帅,郑桐,薄景山,等.黏性土剪切波速不确定性的统计分析[J].世界地震工程,2010,26(增刊1):99-103. Liu Hongshuai, Zheng Tong, Bo Jingshan, et al. Statistical Analysis of Uncertainty for Shear Wave Velocities of Cohesive Soils[J]. World Earthquake Engineering, 2010, 26(Sup.1):99-103.
[1] 孙洪伟, 傅汝进. 季冻土区临水轻台结构冻拔特征分析及防治[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1405-1414.
[2] 王明常, 徐则双, 王凤艳, 孟祥羽, 丁庆, 张馨月. 基于摄影测量获取岩体结构面参数的概率分布拟合检验[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1898-1906.
[3] 孙忠军,杨志斌,秦爱华,张富贵,周亚龙. 中纬度带天然气水合物地球化学勘查技术[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1063-1070.
[4] 张虎, 张建明, 苏凯, 刘世伟. 高温-高含冰量冻土原位旁压蠕变试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1950-1957.
[5] 张中琼, 吴青柏. 青藏高原多年冻土热融灾害发展预测[J]. J4, 2012, 42(2): 454-461.
[6] 李向群, 孙超. 吉林省公路102线路基冻胀规律及冻深计算方法[J]. J4, 2010, 40(5): 1128-1132.
[7] 韩江涛,刘国兴,唐君辉. TEM拟地震成像法在漠河地区探测永久冻土层的应用[J]. J4, 2008, 38(6): 1060-1064.
[8] 刘三意,夏柏如. 多工艺旋挖钻进施工钻具及在冻土层中的应用[J]. J4, 2008, 38(3): 460-0462.
[9] 李杨,王清,赵安平,陈慧娥. 长春地区季冻土基本性质对水分迁移的影响[J]. J4, 2008, 38(2): 279-0284.
[10] 许兆义,李 宁,魏 静. 青藏铁路建设环境的“三大难题”[J]. J4, 2007, 37(2): 406-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!